Spaces:
Runtime error
Runtime error
| import torch | |
| import torchvision.transforms as transforms | |
| from torchvision.models import resnet50 | |
| from PIL import Image | |
| import gradio as gr | |
| # Load the pre-trained model (ResNet50) | |
| model = resnet50(pretrained=True) | |
| model.eval() | |
| # Define the transforms | |
| transform = transforms.Compose([ | |
| transforms.Resize((224, 224)), # Resize to the size expected by ResNet | |
| transforms.ToTensor(), | |
| transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
| ]) | |
| # Define the prediction function | |
| def predict(image): | |
| image = Image.fromarray(image.astype('uint8'), 'RGB') | |
| image = transform(image).unsqueeze(0) | |
| with torch.no_grad(): | |
| outputs = model(image) | |
| _, predicted = torch.max(outputs, 1) | |
| return predicted.item() | |
| # Create and launch the Gradio interface | |
| iface = gr.Interface(fn=predict, inputs="image", outputs="label") | |
| iface.launch() | |