Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
import random | |
# Model path (relative to the Space root) | |
MODEL_PATH = "./emoji_deepseekmath-r1" | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH) | |
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH).to("cuda" if torch.cuda.is_available() else "cpu") | |
def emojiq_brainpower(): | |
logic = random.randint(40, 100) | |
emoji_confusion = 100 - logic | |
caffeine = random.randint(10, 50) | |
return ( | |
f"π§ {logic}% logic, {emoji_confusion}% 'Wait... is π a number?!' π€, " | |
f"and {caffeine}% caffeine boost βπ" | |
) | |
def solve_emoji_math(problem, temperature, max_length, top_p): | |
if not problem.strip(): | |
return "β οΈ Please enter an emoji math problem to solve.", "" | |
prompt = f"Solve: {problem}\nAnswer:" | |
inputs = tokenizer(prompt, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu") | |
with torch.no_grad(): | |
outputs = model.generate( | |
**inputs, | |
max_length=max_length, | |
temperature=temperature, | |
top_p=top_p, | |
do_sample=True | |
) | |
solution = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
solved_text = solution.split("Answer:")[-1].strip() | |
brainpower = emojiq_brainpower() | |
return f"β Solution: **{solved_text}**", brainpower | |
with gr.Blocks(title="EmojIQ - Emoji Math Solver") as interface: | |
gr.Markdown("# π’ EmojIQ: Emoji Math Solver") | |
gr.Markdown("### Cracking Emoji Codes, Solving Math with a Smile! πβπ") | |
gr.Markdown("Enter an emoji math problem, and let EmojIQ solve it! π€") | |
problem_input = gr.Textbox( | |
label="π Emoji Math Problem", | |
placeholder="e.g., π + π + π = 12", | |
lines=3 | |
) | |
with gr.Row(): | |
with gr.Column(): | |
temperature = gr.Slider(0.0, 1.5, value=0.7, step=0.1, label="Temperature (0 = logical, 1 = creative)") | |
max_length = gr.Slider(50, 200, value=100, step=10, label="Max Output Length") | |
top_p = gr.Slider(0.0, 1.0, value=0.9, step=0.05, label="Top-p (sampling diversity)") | |
solution_output = gr.Textbox(label="Solution", interactive=False) | |
brainpower_output = gr.Textbox(label="EmojIQ Brainpower", interactive=False) | |
solve_button = gr.Button("π Solve Emoji Math") | |
solve_button.click( | |
fn=solve_emoji_math, | |
inputs=[problem_input, temperature, max_length, top_p], | |
outputs=[solution_output, brainpower_output] | |
) | |
gr.Markdown("---") | |
gr.Markdown("π’ **EmojIQ** - Cracking Emoji Codes, One Equation at a Time! π") | |
interface.launch() |