|
|
|
|
|
|
|
|
|
import os |
|
|
|
import torch |
|
from torch.autograd import Function |
|
from torch.nn import functional as F |
|
|
|
upfirdn2d_ext = None |
|
|
|
|
|
class UpFirDn2dBackward(Function): |
|
@staticmethod |
|
def forward( |
|
ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad, in_size, out_size |
|
): |
|
up_x, up_y = up |
|
down_x, down_y = down |
|
g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad |
|
|
|
grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1) |
|
|
|
grad_input = upfirdn2d_ext.upfirdn2d( |
|
grad_output, |
|
grad_kernel, |
|
down_x, |
|
down_y, |
|
up_x, |
|
up_y, |
|
g_pad_x0, |
|
g_pad_x1, |
|
g_pad_y0, |
|
g_pad_y1, |
|
) |
|
grad_input = grad_input.view(in_size[0], in_size[1], in_size[2], in_size[3]) |
|
|
|
ctx.save_for_backward(kernel) |
|
|
|
pad_x0, pad_x1, pad_y0, pad_y1 = pad |
|
|
|
ctx.up_x = up_x |
|
ctx.up_y = up_y |
|
ctx.down_x = down_x |
|
ctx.down_y = down_y |
|
ctx.pad_x0 = pad_x0 |
|
ctx.pad_x1 = pad_x1 |
|
ctx.pad_y0 = pad_y0 |
|
ctx.pad_y1 = pad_y1 |
|
ctx.in_size = in_size |
|
ctx.out_size = out_size |
|
|
|
return grad_input |
|
|
|
@staticmethod |
|
def backward(ctx, gradgrad_input): |
|
(kernel,) = ctx.saved_tensors |
|
|
|
gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx.in_size[3], 1) |
|
|
|
gradgrad_out = upfirdn2d_ext.upfirdn2d( |
|
gradgrad_input, |
|
kernel, |
|
ctx.up_x, |
|
ctx.up_y, |
|
ctx.down_x, |
|
ctx.down_y, |
|
ctx.pad_x0, |
|
ctx.pad_x1, |
|
ctx.pad_y0, |
|
ctx.pad_y1, |
|
) |
|
|
|
|
|
gradgrad_out = gradgrad_out.view( |
|
ctx.in_size[0], ctx.in_size[1], ctx.out_size[0], ctx.out_size[1] |
|
) |
|
|
|
return gradgrad_out, None, None, None, None, None, None, None, None |
|
|
|
|
|
class UpFirDn2d(Function): |
|
@staticmethod |
|
def forward(ctx, input, kernel, up, down, pad): |
|
up_x, up_y = up |
|
down_x, down_y = down |
|
pad_x0, pad_x1, pad_y0, pad_y1 = pad |
|
|
|
kernel_h, kernel_w = kernel.shape |
|
_, channel, in_h, in_w = input.shape |
|
ctx.in_size = input.shape |
|
|
|
input = input.reshape(-1, in_h, in_w, 1) |
|
|
|
ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1])) |
|
|
|
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 |
|
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 |
|
ctx.out_size = (out_h, out_w) |
|
|
|
ctx.up = (up_x, up_y) |
|
ctx.down = (down_x, down_y) |
|
ctx.pad = (pad_x0, pad_x1, pad_y0, pad_y1) |
|
|
|
g_pad_x0 = kernel_w - pad_x0 - 1 |
|
g_pad_y0 = kernel_h - pad_y0 - 1 |
|
g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1 |
|
g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1 |
|
|
|
ctx.g_pad = (g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1) |
|
|
|
out = upfirdn2d_ext.upfirdn2d( |
|
input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1 |
|
) |
|
|
|
out = out.view(-1, channel, out_h, out_w) |
|
|
|
return out |
|
|
|
@staticmethod |
|
def backward(ctx, grad_output): |
|
kernel, grad_kernel = ctx.saved_tensors |
|
|
|
grad_input = UpFirDn2dBackward.apply( |
|
grad_output, |
|
kernel, |
|
grad_kernel, |
|
ctx.up, |
|
ctx.down, |
|
ctx.pad, |
|
ctx.g_pad, |
|
ctx.in_size, |
|
ctx.out_size, |
|
) |
|
|
|
return grad_input, None, None, None, None |
|
|
|
|
|
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)): |
|
if input.device.type == "cpu": |
|
out = upfirdn2d_native( |
|
input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1] |
|
) |
|
else: |
|
out = UpFirDn2d.apply( |
|
input, kernel, (up, up), (down, down), (pad[0], pad[1], pad[0], pad[1]) |
|
) |
|
|
|
return out |
|
|
|
|
|
def upfirdn2d_native( |
|
input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1 |
|
): |
|
_, channel, in_h, in_w = input.shape |
|
input = input.reshape(-1, in_h, in_w, 1) |
|
|
|
_, in_h, in_w, minor = input.shape |
|
kernel_h, kernel_w = kernel.shape |
|
|
|
out = input.view(-1, in_h, 1, in_w, 1, minor) |
|
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1]) |
|
out = out.view(-1, in_h * up_y, in_w * up_x, minor) |
|
|
|
out = F.pad( |
|
out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)] |
|
) |
|
out = out[ |
|
:, |
|
max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0), |
|
max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0), |
|
:, |
|
] |
|
|
|
out = out.permute(0, 3, 1, 2) |
|
out = out.reshape( |
|
[-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1] |
|
) |
|
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w) |
|
out = F.conv2d(out, w) |
|
out = out.reshape( |
|
-1, |
|
minor, |
|
in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, |
|
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, |
|
) |
|
out = out.permute(0, 2, 3, 1) |
|
out = out[:, ::down_y, ::down_x, :] |
|
|
|
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 |
|
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 |
|
|
|
return out.view(-1, channel, out_h, out_w) |
|
|