|
|
|
|
|
import math |
|
import random |
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
|
|
from .fused_act import FusedLeakyReLU |
|
from .stylegan2_arch import ( |
|
ConvLayer, |
|
EqualConv2d, |
|
EqualLinear, |
|
ResBlock, |
|
ScaledLeakyReLU, |
|
StyleGAN2Generator, |
|
) |
|
|
|
|
|
class StyleGAN2GeneratorSFT(StyleGAN2Generator): |
|
"""StyleGAN2 Generator with SFT modulation (Spatial Feature Transform). |
|
Args: |
|
out_size (int): The spatial size of outputs. |
|
num_style_feat (int): Channel number of style features. Default: 512. |
|
num_mlp (int): Layer number of MLP style layers. Default: 8. |
|
channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2. |
|
resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. A cross production will be |
|
applied to extent 1D resample kernel to 2D resample kernel. Default: (1, 3, 3, 1). |
|
lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01. |
|
narrow (float): The narrow ratio for channels. Default: 1. |
|
sft_half (bool): Whether to apply SFT on half of the input channels. Default: False. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
out_size, |
|
num_style_feat=512, |
|
num_mlp=8, |
|
channel_multiplier=2, |
|
resample_kernel=(1, 3, 3, 1), |
|
lr_mlp=0.01, |
|
narrow=1, |
|
sft_half=False, |
|
): |
|
super(StyleGAN2GeneratorSFT, self).__init__( |
|
out_size, |
|
num_style_feat=num_style_feat, |
|
num_mlp=num_mlp, |
|
channel_multiplier=channel_multiplier, |
|
resample_kernel=resample_kernel, |
|
lr_mlp=lr_mlp, |
|
narrow=narrow, |
|
) |
|
self.sft_half = sft_half |
|
|
|
def forward( |
|
self, |
|
styles, |
|
conditions, |
|
input_is_latent=False, |
|
noise=None, |
|
randomize_noise=True, |
|
truncation=1, |
|
truncation_latent=None, |
|
inject_index=None, |
|
return_latents=False, |
|
): |
|
"""Forward function for StyleGAN2GeneratorSFT. |
|
Args: |
|
styles (list[Tensor]): Sample codes of styles. |
|
conditions (list[Tensor]): SFT conditions to generators. |
|
input_is_latent (bool): Whether input is latent style. Default: False. |
|
noise (Tensor | None): Input noise or None. Default: None. |
|
randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True. |
|
truncation (float): The truncation ratio. Default: 1. |
|
truncation_latent (Tensor | None): The truncation latent tensor. Default: None. |
|
inject_index (int | None): The injection index for mixing noise. Default: None. |
|
return_latents (bool): Whether to return style latents. Default: False. |
|
""" |
|
|
|
if not input_is_latent: |
|
styles = [self.style_mlp(s) for s in styles] |
|
|
|
if noise is None: |
|
if randomize_noise: |
|
noise = [None] * self.num_layers |
|
else: |
|
noise = [ |
|
getattr(self.noises, f"noise{i}") for i in range(self.num_layers) |
|
] |
|
|
|
if truncation < 1: |
|
style_truncation = [] |
|
for style in styles: |
|
style_truncation.append( |
|
truncation_latent + truncation * (style - truncation_latent) |
|
) |
|
styles = style_truncation |
|
|
|
if len(styles) == 1: |
|
inject_index = self.num_latent |
|
|
|
if styles[0].ndim < 3: |
|
|
|
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) |
|
else: |
|
latent = styles[0] |
|
elif len(styles) == 2: |
|
if inject_index is None: |
|
inject_index = random.randint(1, self.num_latent - 1) |
|
latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1) |
|
latent2 = ( |
|
styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1) |
|
) |
|
latent = torch.cat([latent1, latent2], 1) |
|
|
|
|
|
out = self.constant_input(latent.shape[0]) |
|
out = self.style_conv1(out, latent[:, 0], noise=noise[0]) |
|
skip = self.to_rgb1(out, latent[:, 1]) |
|
|
|
i = 1 |
|
for conv1, conv2, noise1, noise2, to_rgb in zip( |
|
self.style_convs[::2], |
|
self.style_convs[1::2], |
|
noise[1::2], |
|
noise[2::2], |
|
self.to_rgbs, |
|
): |
|
out = conv1(out, latent[:, i], noise=noise1) |
|
|
|
|
|
if i < len(conditions): |
|
|
|
if self.sft_half: |
|
out_same, out_sft = torch.split(out, int(out.size(1) // 2), dim=1) |
|
out_sft = out_sft * conditions[i - 1] + conditions[i] |
|
out = torch.cat([out_same, out_sft], dim=1) |
|
else: |
|
out = out * conditions[i - 1] + conditions[i] |
|
|
|
out = conv2(out, latent[:, i + 1], noise=noise2) |
|
skip = to_rgb(out, latent[:, i + 2], skip) |
|
i += 2 |
|
|
|
image = skip |
|
|
|
if return_latents: |
|
return image, latent |
|
else: |
|
return image, None |
|
|
|
|
|
class ConvUpLayer(nn.Module): |
|
"""Convolutional upsampling layer. It uses bilinear upsampler + Conv. |
|
Args: |
|
in_channels (int): Channel number of the input. |
|
out_channels (int): Channel number of the output. |
|
kernel_size (int): Size of the convolving kernel. |
|
stride (int): Stride of the convolution. Default: 1 |
|
padding (int): Zero-padding added to both sides of the input. Default: 0. |
|
bias (bool): If ``True``, adds a learnable bias to the output. Default: ``True``. |
|
bias_init_val (float): Bias initialized value. Default: 0. |
|
activate (bool): Whether use activateion. Default: True. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=1, |
|
padding=0, |
|
bias=True, |
|
bias_init_val=0, |
|
activate=True, |
|
): |
|
super(ConvUpLayer, self).__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.kernel_size = kernel_size |
|
self.stride = stride |
|
self.padding = padding |
|
|
|
self.scale = 1 / math.sqrt(in_channels * kernel_size**2) |
|
|
|
self.weight = nn.Parameter( |
|
torch.randn(out_channels, in_channels, kernel_size, kernel_size) |
|
) |
|
|
|
if bias and not activate: |
|
self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val)) |
|
else: |
|
self.register_parameter("bias", None) |
|
|
|
|
|
if activate: |
|
if bias: |
|
self.activation = FusedLeakyReLU(out_channels) |
|
else: |
|
self.activation = ScaledLeakyReLU(0.2) |
|
else: |
|
self.activation = None |
|
|
|
def forward(self, x): |
|
|
|
out = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=False) |
|
|
|
out = F.conv2d( |
|
out, |
|
self.weight * self.scale, |
|
bias=self.bias, |
|
stride=self.stride, |
|
padding=self.padding, |
|
) |
|
|
|
if self.activation is not None: |
|
out = self.activation(out) |
|
return out |
|
|
|
|
|
class ResUpBlock(nn.Module): |
|
"""Residual block with upsampling. |
|
Args: |
|
in_channels (int): Channel number of the input. |
|
out_channels (int): Channel number of the output. |
|
""" |
|
|
|
def __init__(self, in_channels, out_channels): |
|
super(ResUpBlock, self).__init__() |
|
|
|
self.conv1 = ConvLayer(in_channels, in_channels, 3, bias=True, activate=True) |
|
self.conv2 = ConvUpLayer( |
|
in_channels, out_channels, 3, stride=1, padding=1, bias=True, activate=True |
|
) |
|
self.skip = ConvUpLayer( |
|
in_channels, out_channels, 1, bias=False, activate=False |
|
) |
|
|
|
def forward(self, x): |
|
out = self.conv1(x) |
|
out = self.conv2(out) |
|
skip = self.skip(x) |
|
out = (out + skip) / math.sqrt(2) |
|
return out |
|
|
|
|
|
class GFPGANv1(nn.Module): |
|
"""The GFPGAN architecture: Unet + StyleGAN2 decoder with SFT. |
|
Ref: GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior. |
|
Args: |
|
out_size (int): The spatial size of outputs. |
|
num_style_feat (int): Channel number of style features. Default: 512. |
|
channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2. |
|
resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. A cross production will be |
|
applied to extent 1D resample kernel to 2D resample kernel. Default: (1, 3, 3, 1). |
|
decoder_load_path (str): The path to the pre-trained decoder model (usually, the StyleGAN2). Default: None. |
|
fix_decoder (bool): Whether to fix the decoder. Default: True. |
|
num_mlp (int): Layer number of MLP style layers. Default: 8. |
|
lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01. |
|
input_is_latent (bool): Whether input is latent style. Default: False. |
|
different_w (bool): Whether to use different latent w for different layers. Default: False. |
|
narrow (float): The narrow ratio for channels. Default: 1. |
|
sft_half (bool): Whether to apply SFT on half of the input channels. Default: False. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
out_size, |
|
num_style_feat=512, |
|
channel_multiplier=1, |
|
resample_kernel=(1, 3, 3, 1), |
|
decoder_load_path=None, |
|
fix_decoder=True, |
|
|
|
num_mlp=8, |
|
lr_mlp=0.01, |
|
input_is_latent=False, |
|
different_w=False, |
|
narrow=1, |
|
sft_half=False, |
|
): |
|
super(GFPGANv1, self).__init__() |
|
self.input_is_latent = input_is_latent |
|
self.different_w = different_w |
|
self.num_style_feat = num_style_feat |
|
|
|
unet_narrow = narrow * 0.5 |
|
channels = { |
|
"4": int(512 * unet_narrow), |
|
"8": int(512 * unet_narrow), |
|
"16": int(512 * unet_narrow), |
|
"32": int(512 * unet_narrow), |
|
"64": int(256 * channel_multiplier * unet_narrow), |
|
"128": int(128 * channel_multiplier * unet_narrow), |
|
"256": int(64 * channel_multiplier * unet_narrow), |
|
"512": int(32 * channel_multiplier * unet_narrow), |
|
"1024": int(16 * channel_multiplier * unet_narrow), |
|
} |
|
|
|
self.log_size = int(math.log(out_size, 2)) |
|
first_out_size = 2 ** (int(math.log(out_size, 2))) |
|
|
|
self.conv_body_first = ConvLayer( |
|
3, channels[f"{first_out_size}"], 1, bias=True, activate=True |
|
) |
|
|
|
|
|
in_channels = channels[f"{first_out_size}"] |
|
self.conv_body_down = nn.ModuleList() |
|
for i in range(self.log_size, 2, -1): |
|
out_channels = channels[f"{2**(i - 1)}"] |
|
self.conv_body_down.append( |
|
ResBlock(in_channels, out_channels, resample_kernel) |
|
) |
|
in_channels = out_channels |
|
|
|
self.final_conv = ConvLayer( |
|
in_channels, channels["4"], 3, bias=True, activate=True |
|
) |
|
|
|
|
|
in_channels = channels["4"] |
|
self.conv_body_up = nn.ModuleList() |
|
for i in range(3, self.log_size + 1): |
|
out_channels = channels[f"{2**i}"] |
|
self.conv_body_up.append(ResUpBlock(in_channels, out_channels)) |
|
in_channels = out_channels |
|
|
|
|
|
self.toRGB = nn.ModuleList() |
|
for i in range(3, self.log_size + 1): |
|
self.toRGB.append( |
|
EqualConv2d( |
|
channels[f"{2**i}"], |
|
3, |
|
1, |
|
stride=1, |
|
padding=0, |
|
bias=True, |
|
bias_init_val=0, |
|
) |
|
) |
|
|
|
if different_w: |
|
linear_out_channel = (int(math.log(out_size, 2)) * 2 - 2) * num_style_feat |
|
else: |
|
linear_out_channel = num_style_feat |
|
|
|
self.final_linear = EqualLinear( |
|
channels["4"] * 4 * 4, |
|
linear_out_channel, |
|
bias=True, |
|
bias_init_val=0, |
|
lr_mul=1, |
|
activation=None, |
|
) |
|
|
|
|
|
self.stylegan_decoder = StyleGAN2GeneratorSFT( |
|
out_size=out_size, |
|
num_style_feat=num_style_feat, |
|
num_mlp=num_mlp, |
|
channel_multiplier=channel_multiplier, |
|
resample_kernel=resample_kernel, |
|
lr_mlp=lr_mlp, |
|
narrow=narrow, |
|
sft_half=sft_half, |
|
) |
|
|
|
|
|
if decoder_load_path: |
|
self.stylegan_decoder.load_state_dict( |
|
torch.load( |
|
decoder_load_path, map_location=lambda storage, loc: storage |
|
)["params_ema"] |
|
) |
|
|
|
if fix_decoder: |
|
for _, param in self.stylegan_decoder.named_parameters(): |
|
param.requires_grad = False |
|
|
|
|
|
self.condition_scale = nn.ModuleList() |
|
self.condition_shift = nn.ModuleList() |
|
for i in range(3, self.log_size + 1): |
|
out_channels = channels[f"{2**i}"] |
|
if sft_half: |
|
sft_out_channels = out_channels |
|
else: |
|
sft_out_channels = out_channels * 2 |
|
self.condition_scale.append( |
|
nn.Sequential( |
|
EqualConv2d( |
|
out_channels, |
|
out_channels, |
|
3, |
|
stride=1, |
|
padding=1, |
|
bias=True, |
|
bias_init_val=0, |
|
), |
|
ScaledLeakyReLU(0.2), |
|
EqualConv2d( |
|
out_channels, |
|
sft_out_channels, |
|
3, |
|
stride=1, |
|
padding=1, |
|
bias=True, |
|
bias_init_val=1, |
|
), |
|
) |
|
) |
|
self.condition_shift.append( |
|
nn.Sequential( |
|
EqualConv2d( |
|
out_channels, |
|
out_channels, |
|
3, |
|
stride=1, |
|
padding=1, |
|
bias=True, |
|
bias_init_val=0, |
|
), |
|
ScaledLeakyReLU(0.2), |
|
EqualConv2d( |
|
out_channels, |
|
sft_out_channels, |
|
3, |
|
stride=1, |
|
padding=1, |
|
bias=True, |
|
bias_init_val=0, |
|
), |
|
) |
|
) |
|
|
|
def forward( |
|
self, x, return_latents=False, return_rgb=True, randomize_noise=True, **kwargs |
|
): |
|
"""Forward function for GFPGANv1. |
|
Args: |
|
x (Tensor): Input images. |
|
return_latents (bool): Whether to return style latents. Default: False. |
|
return_rgb (bool): Whether return intermediate rgb images. Default: True. |
|
randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True. |
|
""" |
|
conditions = [] |
|
unet_skips = [] |
|
out_rgbs = [] |
|
|
|
|
|
feat = self.conv_body_first(x) |
|
for i in range(self.log_size - 2): |
|
feat = self.conv_body_down[i](feat) |
|
unet_skips.insert(0, feat) |
|
|
|
feat = self.final_conv(feat) |
|
|
|
|
|
style_code = self.final_linear(feat.view(feat.size(0), -1)) |
|
if self.different_w: |
|
style_code = style_code.view(style_code.size(0), -1, self.num_style_feat) |
|
|
|
|
|
for i in range(self.log_size - 2): |
|
|
|
feat = feat + unet_skips[i] |
|
|
|
feat = self.conv_body_up[i](feat) |
|
|
|
scale = self.condition_scale[i](feat) |
|
conditions.append(scale.clone()) |
|
shift = self.condition_shift[i](feat) |
|
conditions.append(shift.clone()) |
|
|
|
if return_rgb: |
|
out_rgbs.append(self.toRGB[i](feat)) |
|
|
|
|
|
image, _ = self.stylegan_decoder( |
|
[style_code], |
|
conditions, |
|
return_latents=return_latents, |
|
input_is_latent=self.input_is_latent, |
|
randomize_noise=randomize_noise, |
|
) |
|
|
|
return image, out_rgbs |
|
|
|
|
|
class FacialComponentDiscriminator(nn.Module): |
|
"""Facial component (eyes, mouth, noise) discriminator used in GFPGAN.""" |
|
|
|
def __init__(self): |
|
super(FacialComponentDiscriminator, self).__init__() |
|
|
|
self.conv1 = ConvLayer( |
|
3, |
|
64, |
|
3, |
|
downsample=False, |
|
resample_kernel=(1, 3, 3, 1), |
|
bias=True, |
|
activate=True, |
|
) |
|
self.conv2 = ConvLayer( |
|
64, |
|
128, |
|
3, |
|
downsample=True, |
|
resample_kernel=(1, 3, 3, 1), |
|
bias=True, |
|
activate=True, |
|
) |
|
self.conv3 = ConvLayer( |
|
128, |
|
128, |
|
3, |
|
downsample=False, |
|
resample_kernel=(1, 3, 3, 1), |
|
bias=True, |
|
activate=True, |
|
) |
|
self.conv4 = ConvLayer( |
|
128, |
|
256, |
|
3, |
|
downsample=True, |
|
resample_kernel=(1, 3, 3, 1), |
|
bias=True, |
|
activate=True, |
|
) |
|
self.conv5 = ConvLayer( |
|
256, |
|
256, |
|
3, |
|
downsample=False, |
|
resample_kernel=(1, 3, 3, 1), |
|
bias=True, |
|
activate=True, |
|
) |
|
self.final_conv = ConvLayer(256, 1, 3, bias=True, activate=False) |
|
|
|
def forward(self, x, return_feats=False, **kwargs): |
|
"""Forward function for FacialComponentDiscriminator. |
|
Args: |
|
x (Tensor): Input images. |
|
return_feats (bool): Whether to return intermediate features. Default: False. |
|
""" |
|
feat = self.conv1(x) |
|
feat = self.conv3(self.conv2(feat)) |
|
rlt_feats = [] |
|
if return_feats: |
|
rlt_feats.append(feat.clone()) |
|
feat = self.conv5(self.conv4(feat)) |
|
if return_feats: |
|
rlt_feats.append(feat.clone()) |
|
out = self.final_conv(feat) |
|
|
|
if return_feats: |
|
return out, rlt_feats |
|
else: |
|
return out, None |
|
|