ML / app.py
bunnyroshan's picture
Update app.py
4b1eaff verified
import gradio as gr
import torch
import cv2
import numpy as np
from PIL import Image
# Load the YOLOv8 model
model = torch.hub.load('ultralytics/yolov8', 'custom', path='best.pt') # YOLOv8 specific
def process_image(image):
# Convert PIL image to numpy array if necessary
if isinstance(image, Image.Image):
image = np.array(image)
# Perform detection
results = model(image)
# Render results
annotated_image = results.render()[0]
return Image.fromarray(annotated_image)
def process_video(video_path):
cap = cv2.VideoCapture(video_path)
frames = []
while(cap.isOpened()):
ret, frame = cap.read()
if not ret:
break
# Perform detection
results = model(frame)
# Render results
annotated_frame = results.render()[0]
frames.append(annotated_frame)
cap.release()
# Convert frames back to a video format
height, width, layers = frames[0].shape
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
video_out = cv2.VideoWriter('output.mp4', fourcc, 30, (width, height))
for frame in frames:
video_out.write(frame)
video_out.release()
return 'output.mp4'
# Create Gradio interface
image_input = gr.inputs.Image(type="pil", label="Upload an image")
video_input = gr.inputs.Video(type="mp4", label="Upload a video")
image_output = gr.outputs.Image(type="pil", label="Detected image")
video_output = gr.outputs.Video(type="mp4", label="Detected video")
iface = gr.Interface(fn={'image': process_image, 'video': process_video},
inputs=[image_input, video_input],
outputs=[image_output, video_output],
title="YOLOv8 Object Detection",
description="Upload an image or video to detect objects using YOLOv8.")
if __name__ == "__main__":
iface.launch()