Spaces:
Sleeping
Sleeping
Commit
·
9c7b739
1
Parent(s):
5765482
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
import numpy as np
|
| 3 |
import math
|
|
@@ -9,9 +10,8 @@ from tensorflow.keras.models import Sequential
|
|
| 9 |
from tensorflow.keras.layers import Dense
|
| 10 |
from tensorflow.keras.layers import LSTM
|
| 11 |
|
| 12 |
-
import gradio as gr
|
| 13 |
-
|
| 14 |
import yfinance as yf
|
|
|
|
| 15 |
|
| 16 |
def get_ans(inp):
|
| 17 |
plt.close()
|
|
@@ -105,8 +105,68 @@ def get_ans(inp):
|
|
| 105 |
df3['index']=range(1, len(df3) + 1)
|
| 106 |
lst_output = pd.DataFrame(lst_output, columns=["Values"])
|
| 107 |
lst_output['index']=range(1, len(lst_output) + 1)
|
| 108 |
-
|
|
|
|
|
|
|
| 109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
with gr.Blocks() as demo:
|
| 112 |
with gr.Row().style(equal_height=True):
|
|
@@ -114,13 +174,36 @@ with gr.Blocks() as demo:
|
|
| 114 |
gr.Markdown("<center><h1>Stock Analysis Tool<h1></center>")
|
| 115 |
gr.Markdown("<center><h3>Give the Ticker of the company you want to analyse. We will provide complete insights on the given company.</h3></center>")
|
| 116 |
gr.Markdown("<center>To get the ticker of the company, click <a href = 'https://finance.yahoo.com/lookup/'>here.</a></center>")
|
| 117 |
-
|
| 118 |
with gr.Row():
|
| 119 |
with gr.Column():
|
| 120 |
Name_of_the_company = gr.Textbox(placeholder="eg, GOOG / MSFT / AAPL", label="TICKER of the company")
|
| 121 |
btn = gr.Button("ANALYSE")
|
| 122 |
gr.Markdown("<center><h2>Analysis<h2></center>")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
gr.Markdown("<h3>Regression Trends of Price<h3>")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
mp = gr.Plot()
|
| 125 |
gr.Markdown("<h3>Price over time<h3>")
|
| 126 |
with gr.Tab("All Time"):
|
|
@@ -134,6 +217,7 @@ with gr.Blocks() as demo:
|
|
| 134 |
Max_year = gr.Textbox(placeholder="The Maximum price for the last year", label='Maximum')
|
| 135 |
Min_year = gr.Textbox(placeholder="The Minimum price for the last year", label="Minimum")
|
| 136 |
with gr.Tab("Past few Days"):
|
|
|
|
| 137 |
mp3 = gr.LinePlot(visible=False, label="Past few Days")
|
| 138 |
with gr.Row():
|
| 139 |
Max_rec = gr.Textbox(placeholder="The Maximum price for the last few days", label='Recent Maximum')
|
|
@@ -146,5 +230,7 @@ with gr.Blocks() as demo:
|
|
| 146 |
|
| 147 |
|
| 148 |
btn.click(get_ans, inputs=Name_of_the_company, outputs= [mp,mp1,mp2,mp3, Max_all, Min_all,Max_year, Min_year, Max_rec, Min_rec, Next_day, Next_plot, Next_plot_all, Next_plot_year])
|
|
|
|
|
|
|
| 149 |
|
| 150 |
-
demo.launch(inline
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
import numpy as np
|
| 4 |
import math
|
|
|
|
| 10 |
from tensorflow.keras.layers import Dense
|
| 11 |
from tensorflow.keras.layers import LSTM
|
| 12 |
|
|
|
|
|
|
|
| 13 |
import yfinance as yf
|
| 14 |
+
from statsmodels.tsa.seasonal import seasonal_decompose
|
| 15 |
|
| 16 |
def get_ans(inp):
|
| 17 |
plt.close()
|
|
|
|
| 105 |
df3['index']=range(1, len(df3) + 1)
|
| 106 |
lst_output = pd.DataFrame(lst_output, columns=["Values"])
|
| 107 |
lst_output['index']=range(1, len(lst_output) + 1)
|
| 108 |
+
the_max = max(np.asarray(df['Open']))
|
| 109 |
+
df3['Values'] = [i * the_max for i in df3['Values']]
|
| 110 |
+
return plt, gr.update(visible=True,value=df, x="Date",y="Open", height=500, width=800),gr.update(visible=True,value=df[-300:], x="Date",y="Open", height=500, width=800),gr.update(visible=True,value=df[-30:], x="Date",y="Open", height=500, width=800), max(np.asarray(df['Open'])), min(np.asarray(df['Open'])), max(np.asarray(df['Open'])[-300:]), min(np.asarray(df['Open'][-300:])), max(np.asarray(df['Open'])[-30:]), min(np.asarray(df['Open'][-30:])), (max(np.asarray(df['Open']))) * (lst_output["Values"][0]), gr.update(visible=True,value=lst_output, x="index",y="Values", height=500, width=800), gr.update(visible=True,value=df3, x="index",y="Values", height=500, width=800), gr.update(visible=True,value=df3[-300:], x="index",y="Values", height=500, width=800)
|
| 111 |
|
| 112 |
+
def get_seo(inp):
|
| 113 |
+
plt.close()
|
| 114 |
+
tickers = yf.Tickers(inp)
|
| 115 |
+
x = tickers.tickers[inp].history(period="15y")
|
| 116 |
+
df = x
|
| 117 |
+
df.reset_index(inplace=True)
|
| 118 |
+
df1 = df.reset_index()['Close']
|
| 119 |
+
df['Date'] = pd.to_datetime(df['Date'])
|
| 120 |
+
scaler = MinMaxScaler(feature_range=(0, 1))
|
| 121 |
+
df1 = scaler.fit_transform(np.array(df1).reshape(-1, 1))
|
| 122 |
+
def create_dataset(dataset, time_step=1):
|
| 123 |
+
dataX, dataY = [], []
|
| 124 |
+
for i in range(len(dataset) - time_step - 1):
|
| 125 |
+
a = dataset[i:(i + time_step), 0]
|
| 126 |
+
dataX.append(a)
|
| 127 |
+
dataY.append(dataset[i + time_step, 0])
|
| 128 |
+
return np.array(dataX), np.array(dataY)
|
| 129 |
+
X_train, y_train = create_dataset(df1, time_step)
|
| 130 |
+
decompose_result_mult = seasonal_decompose(X_train, model="additive", period=time_step)
|
| 131 |
+
trend = decompose_result_mult.trend
|
| 132 |
+
seasonal = decompose_result_mult.seasonal
|
| 133 |
+
residual = decompose_result_mult.resid
|
| 134 |
+
|
| 135 |
+
z = [i[0] for i in trend]
|
| 136 |
+
z = pd.DataFrame(z, columns=['Values'])
|
| 137 |
+
z['index'] = range(1, len(z) + 1)
|
| 138 |
+
|
| 139 |
+
y = [i[0] for i in seasonal]
|
| 140 |
+
y = pd.DataFrame(y, columns=['Values'])
|
| 141 |
+
y['index'] = range(1, len(z) + 1)
|
| 142 |
+
|
| 143 |
+
a = [i[0] for i in residual]
|
| 144 |
+
a = pd.DataFrame(a, columns=['Values'])
|
| 145 |
+
a['index'] = range(1, len(a) + 1)
|
| 146 |
+
|
| 147 |
+
return gr.update(visible=True, value=z, x='index', y='Values', height=500, width=800), gr.update(visible=True, value=y[:100], x='index', y='Values', height=500, width=800), gr.update(visible=True, value=a, x='index', y='Values', height=500, width=800)
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
def get_info(inp):
|
| 151 |
+
tickers = yf.Ticker(inp)
|
| 152 |
+
info = tickers.info
|
| 153 |
+
balance = tickers.balance_sheet
|
| 154 |
+
|
| 155 |
+
long_info= info['longBusinessSummary']
|
| 156 |
+
curr_rat = info['currentRatio']
|
| 157 |
+
quick_rat = info['quickRatio']
|
| 158 |
+
short_rat = info['shortRatio']
|
| 159 |
+
debt_eq = info['debtToEquity']
|
| 160 |
+
volume = info['volume']
|
| 161 |
+
market_cap = info['marketCap']
|
| 162 |
+
curr_price = info['currentPrice']
|
| 163 |
+
rev_per = info['revenuePerShare']
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
return long_info, curr_rat, quick_rat, short_rat, debt_eq, volume, market_cap, curr_price, rev_per
|
| 170 |
|
| 171 |
with gr.Blocks() as demo:
|
| 172 |
with gr.Row().style(equal_height=True):
|
|
|
|
| 174 |
gr.Markdown("<center><h1>Stock Analysis Tool<h1></center>")
|
| 175 |
gr.Markdown("<center><h3>Give the Ticker of the company you want to analyse. We will provide complete insights on the given company.</h3></center>")
|
| 176 |
gr.Markdown("<center>To get the ticker of the company, click <a href = 'https://finance.yahoo.com/lookup/'>here.</a></center>")
|
|
|
|
| 177 |
with gr.Row():
|
| 178 |
with gr.Column():
|
| 179 |
Name_of_the_company = gr.Textbox(placeholder="eg, GOOG / MSFT / AAPL", label="TICKER of the company")
|
| 180 |
btn = gr.Button("ANALYSE")
|
| 181 |
gr.Markdown("<center><h2>Analysis<h2></center>")
|
| 182 |
+
gr.Markdown("<center><h3>Inportant Information</h3></center>")
|
| 183 |
+
info1 = gr.Textbox()
|
| 184 |
+
gr.Markdown("<h4>Insightful Ratios</h4>")
|
| 185 |
+
with gr.Row():
|
| 186 |
+
ratio1 = gr.Textbox(label='Current Ratio')
|
| 187 |
+
ratio2 = gr.Textbox(label='Quick Ratio')
|
| 188 |
+
ratio3 = gr.Textbox(label='Short Ratio')
|
| 189 |
+
ratio4 = gr.Textbox(label='Debt to Equity Ratio')
|
| 190 |
+
|
| 191 |
+
gr.Markdown("<center><h3>General Information</h3></center>")
|
| 192 |
+
with gr.Row():
|
| 193 |
+
curr_price = gr.Textbox(label='Current Price of Stock')
|
| 194 |
+
rev_per = gr.Textbox(label='Revenue per Share')
|
| 195 |
+
vol = gr.Textbox(label='Volume')
|
| 196 |
+
mar_cap = gr.Textbox(label='Market Cap')
|
| 197 |
+
|
| 198 |
gr.Markdown("<h3>Regression Trends of Price<h3>")
|
| 199 |
+
with gr.Tab("Overall Trend"):
|
| 200 |
+
trend_g = gr.LinePlot(visible=False, label='Trend of stock over its lifetime', height=1000, width=1000)
|
| 201 |
+
with gr.Tab("Seasonal Trends"):
|
| 202 |
+
Seaso = gr.LinePlot(visible=False,label="This is for one season", height=1000, width=1000)
|
| 203 |
+
with gr.Tab("Residual Variation"):
|
| 204 |
+
resid = gr.LinePlot(visible=False, label="Residual Variation over time", height=1000, width=1000)
|
| 205 |
+
|
| 206 |
+
|
| 207 |
mp = gr.Plot()
|
| 208 |
gr.Markdown("<h3>Price over time<h3>")
|
| 209 |
with gr.Tab("All Time"):
|
|
|
|
| 217 |
Max_year = gr.Textbox(placeholder="The Maximum price for the last year", label='Maximum')
|
| 218 |
Min_year = gr.Textbox(placeholder="The Minimum price for the last year", label="Minimum")
|
| 219 |
with gr.Tab("Past few Days"):
|
| 220 |
+
|
| 221 |
mp3 = gr.LinePlot(visible=False, label="Past few Days")
|
| 222 |
with gr.Row():
|
| 223 |
Max_rec = gr.Textbox(placeholder="The Maximum price for the last few days", label='Recent Maximum')
|
|
|
|
| 230 |
|
| 231 |
|
| 232 |
btn.click(get_ans, inputs=Name_of_the_company, outputs= [mp,mp1,mp2,mp3, Max_all, Min_all,Max_year, Min_year, Max_rec, Min_rec, Next_day, Next_plot, Next_plot_all, Next_plot_year])
|
| 233 |
+
btn.click(get_info, inputs=Name_of_the_company, outputs=[info1, ratio1, ratio2, ratio3, ratio4, vol, mar_cap, curr_price, rev_per])
|
| 234 |
+
btn.click(get_seo, inputs=Name_of_the_company, outputs=[trend_g, Seaso, resid])
|
| 235 |
|
| 236 |
+
demo.launch(inline=False)
|