bullm commited on
Commit
65045f1
1 Parent(s): bb112ef

Update apps/Covid19.py

Browse files
Files changed (1) hide show
  1. apps/Covid19.py +1 -368
apps/Covid19.py CHANGED
@@ -1,369 +1,2 @@
1
  import streamlit as st
2
- from plotly import graph_objs as go
3
- import pandas as pd
4
- from pandas.core.groupby.groupby import DataError
5
- from pytrends.request import TrendReq
6
- from datetime import datetime, timedelta, date
7
- import numpy as np
8
- from plotly.subplots import make_subplots
9
- from metodos import colores_corporativos
10
- import pybase64 as base64
11
- import io
12
- from logs_portal import log
13
- from Scheduler import Scheduler_Covid as sc
14
- import os
15
-
16
- def button_style():
17
- style_button = """
18
- <style>
19
- button {
20
- margin-top:-100px;
21
- display: inline-block;
22
- background-color: #e8e8e8;
23
- border-radius: 15px;
24
- border: 4px #cccccc;
25
- color: #4a4a4a;
26
- text-align: center;
27
- font-size: 15px;
28
- padding: 2px;
29
- width: 260px;
30
- transition: all 0.5s;
31
- cursor: pointer;
32
- margin: 5px;
33
- }
34
- button span {
35
- cursor: pointer;
36
- display: inline-block;
37
- position: relative;
38
- transition: 0.5s;
39
- }
40
- button span:after {
41
- content: '\00bb';
42
- position: absolute;
43
- opacity: 0;
44
- top: 0;
45
- right: -20px;
46
- transition: 0.5s;
47
- }
48
- button:hover {
49
- background-color: #bb1114;
50
- color:#e8e8e8;
51
- }
52
- button:hover span {
53
- padding-right: 25px;
54
- }
55
- button:hover span:after {
56
- opacity: 1;
57
- right: 0;
58
- }
59
- </style>
60
- """
61
- st.markdown(style_button, unsafe_allow_html=True)
62
-
63
-
64
- def get_table_download_link(df):
65
- """Generates a link allowing the data in a given panda dataframe to be
66
- downloaded
67
- in: dataframe
68
- out: href string
69
- """
70
- csv = df.to_csv(index=False)
71
- b64 = base64.b64encode(csv.encode()).decode()
72
- name_arch = "Scoring_filtrado.csv"
73
- name_mark = "Descargar .csv "
74
- style = '"color:black;text-decoration: none;font-size:18px;"'
75
- href = f'<center><a href="data:file/csv;base64,{b64}" style=' + style+' download="'+name_arch+'" ><button>'+name_mark+'</button></a></center>'
76
- return href
77
-
78
-
79
- def get_table_excel_link(df, name_arch):
80
- towrite = io.BytesIO()
81
- downloaded_file = df.to_excel(towrite, encoding='utf-8', index=False,
82
- header=True)
83
- towrite.seek(0) # reset pointer
84
- file_name = name_arch
85
- style = 'style="color:black;text-decoration: none; font-size:18px;" '
86
- name_mark = "Descargar "+name_arch
87
- b64 = base64.b64encode(towrite.read()).decode() # some strings
88
- linko= f'<center><a href="data:application/vnd.openxmlformats-officedocument.spreadsheetml.sheet;base64,{b64}" '+style+'download="'+file_name+'"><button>'+name_mark+'</button></a></center>'
89
- return linko
90
-
91
-
92
- @st.cache(show_spinner=True)
93
- def charged_data():
94
- regiones = {}
95
- regiones['Latam'] = ['Argentina', 'Brazil', 'Chile', 'Colombia',
96
- 'Mexico', 'Peru']
97
- regiones['Europa'] = ['Italy', 'Spain', 'Germany', 'United Kingdom',
98
- 'France']
99
- regiones['Asia Emergente'] = ['South Korea', 'Taiwan', 'Hong Kong',
100
- 'India', 'Thailand', 'Indonesia']
101
- regiones['USA'] = ['United States']
102
- data_dict = np.load('Scheduler/dict_movilidad.npy',
103
- allow_pickle='TRUE').item()
104
- return data_dict, regiones
105
-
106
-
107
- @st.cache(show_spinner=True)
108
- def charged_data2():
109
- covid_data = pd.read_csv('https://covid.ourworldindata.org/data/owid-covid-data.csv')
110
- paises = {'CL': 'Chile', 'AR': 'Argentina', 'BR': 'Brazil',
111
- 'MX': 'Mexico'}
112
- covid_data = covid_data.loc[covid_data['location'].isin(paises.values())]
113
- covid_data['date'] = pd.to_datetime(covid_data['date'])
114
- covid_data.set_index(['date', 'location'], inplace=True)
115
- # Creamos diccionario con cada una de las variables para distintos países
116
- data_dict = {}
117
- for col in covid_data.columns:
118
- try:
119
- data_dict[col] = covid_data[col].unstack().fillna(0).rolling(1).mean()
120
- except DataError:
121
- pass
122
- # Descargamos la data de google trends
123
- pytrends = TrendReq(retries=5, backoff_factor=0.2,
124
- requests_args={'verify': False})
125
- start = (datetime.today() - timedelta(180)).strftime("%Y-%m-%d")
126
- start = datetime(2020, 2, 1).strftime("%Y-%m-%d")
127
- end = datetime.today().strftime("%Y-%m-%d")
128
- tf = f'{start} {end}'
129
- kw_lists = {
130
- 'CL': ['PCR', 'sintomas covid', 'examen covid',
131
- 'covid positivo'],
132
- 'AR': ['PCR', 'olfato', 'sintomas covid', 'perdida gusto',
133
- 'covid positivo'],
134
- 'MX': ['PCR', 'olfato', 'sintomas covid', 'covid positivo',
135
- 'perdida gusto'],
136
- 'BR': ['PCR', 'sintomas covid', 'exame covid', 'covid positivo']
137
- }
138
- gt_data = {}
139
- for p, kw in kw_lists.items():
140
- pytrends.build_payload(kw, timeframe=tf, geo=p)
141
- df = pytrends.interest_over_time().drop(columns='isPartial')
142
- gt_data[paises[p]] = df.div(df.mean(0).values)
143
- data_dict['GT Index'] = pd.DataFrame({p: gt_data[p].mean(1).rolling(1).mean()
144
- for p in gt_data.keys()})
145
- return data_dict, paises
146
-
147
-
148
- @log
149
- def Movilidad():
150
- largo = 400
151
- ancho = 550
152
- button_style()
153
- placebar = st.empty()
154
- percent_complete = 0
155
- my_bar = placebar.progress(percent_complete)
156
- data_cargada = charged_data()
157
- data_dict = data_cargada[0]
158
- regiones = data_cargada[1]
159
- europa = data_dict['Mobility Index'][regiones.keys()]["Europa"]
160
- latam = data_dict['Mobility Index'][regiones.keys()]["Latam"]
161
- asia = data_dict['Mobility Index'][regiones.keys()]["Asia Emergente"]
162
- USA = data_dict['Mobility Index'][regiones.keys()]["USA"]
163
- mov_region = data_dict['Mobility Index'][regiones.keys()][["USA", "Europa","Asia Emergente", "Latam"]]
164
- percent_complete = percent_complete+33
165
- placebar.progress(percent_complete)
166
- colores = list(colores_corporativos().values())
167
- colores2 = []
168
- for i in range(len(colores)):
169
- colores2.append("rgb"+str(colores[i]))
170
- def plot_raw_data():
171
- fig = go.Figure()
172
- europa_ = go.Scatter(x=europa.index, y=europa.values, name="Europa",
173
- line=dict(color=colores2[0]))
174
- latam_ = go.Scatter(x=latam.index, y=latam.values, name="Latam",
175
- line=dict(color=colores2[1]))
176
- USA_ = go.Scatter(x=USA.index, y=USA.values, name="USA",
177
- line=dict(color=colores2[2]))
178
- asia_ = go.Scatter(x=asia.index, y=asia.values, name="Asia Emergente",
179
- line=dict(color=colores2[3]))
180
- fig.add_trace(europa_)
181
- fig.add_trace(latam_)
182
- fig.add_trace(USA_)
183
- fig.add_trace(asia_)
184
- fig.layout.update(title_text="Evolución por region",
185
- xaxis_rangeslider_visible=True,
186
- margin_b=20,
187
- margin_r=20,
188
- margin_l=20,
189
- width=ancho,
190
- height=largo,
191
- legend=dict(orientation="h",
192
- yanchor="bottom",
193
- y=1.02,
194
- xanchor="right",
195
- x=1))
196
- fig2 = go.Figure()
197
- i = 0
198
- for pais in regiones["Latam"]:
199
- data_pais = data_dict['Mobility Index'][regiones['Latam']][pais]
200
- pais_gr = go.Scatter(x=data_pais.index,
201
- y=data_pais.values, name=pais,
202
- line=dict(color=colores2[i]))
203
- fig2.add_trace(pais_gr)
204
- i = i+1
205
- fig2.layout.update(title_text="Evolución LATAM",
206
- xaxis_rangeslider_visible=True, margin_b=20,
207
- margin_r=20,margin_l=20,
208
- width=ancho, height=largo,
209
- legend=dict(orientation="h",
210
- yanchor="bottom",
211
- y=1.0,
212
- xanchor="right",
213
- x=1))
214
- col1, col2 = st.columns(2)
215
- col1.plotly_chart(fig, use_container_width=True)
216
- col2.plotly_chart(fig2, use_container_width=True)
217
- link_excel_1 = get_table_excel_link(data_dict['Mobility Index'][regiones['Latam']], "Movilidad Latam.xlsx")
218
- link_excel_2 = get_table_excel_link(mov_region, "Movilidad por region.xlsx")
219
- col1.markdown(link_excel_1, unsafe_allow_html=True)
220
- col2.markdown(link_excel_2, unsafe_allow_html=True)
221
- percent_complete = percent_complete + 33
222
- placebar.progress(percent_complete)
223
- placebar.empty()
224
- plot_raw_data()
225
- percent_complete = percent_complete + 34
226
- my_bar.progress(percent_complete)
227
- my_bar.empty()
228
- data_desag = pd.read_excel("Scheduler/Movilidad_desagrada.xlsx",
229
- engine="openpyxl")
230
- st.markdown(get_table_excel_link(data_desag, "Movilidad desagregada.xlsx"),
231
- unsafe_allow_html=True)
232
- try:
233
- user = os.getlogin()
234
- if user == 'bullm':
235
- act = st.button('Actualizar')
236
- if act:
237
- sc.run_data_covid()
238
- ud = pd.read_excel('Data/update_data.xlsx')
239
- ud = ud[ud['View'] != 'Covid19']
240
- today = date.today().strftime('%d-%m-%Y')
241
- ud = ud.append({"View": "Covid19",
242
- "Last_Update": today}, ignore_index=True)
243
- ud.to_excel('Data/update_data.xlsx', index=False)
244
- except Exception:
245
- pass
246
-
247
-
248
- @log
249
- def Correlacion_GT():
250
- largo = 400
251
- ancho = 550
252
- button_style()
253
- # Cargamos la data relevante
254
- percent_complete = 0
255
- my_bar = st.progress(percent_complete)
256
- percent_complete = percent_complete + 33
257
- my_bar.progress(percent_complete)
258
- data_cargada = charged_data2()
259
- data_dict = data_cargada[0]
260
- paises = data_cargada[1]
261
- corr_df = pd.DataFrame(index=paises.values(), columns=np.arange(-3, 1))
262
- percent_complete = percent_complete + 33
263
- my_bar.progress(percent_complete)
264
- i = 0
265
- cols = st.columns(2)
266
- col1, col2, col3, col4 = st.columns((1.5, 7, 2, 7))
267
- for p in corr_df.index:
268
- df = pd.concat([data_dict['GT Index'][p],
269
- data_dict['new_cases_per_million'][p]],
270
- axis=1).dropna()
271
- df.columns = ['GT Index', 'Nuevos Casos Confirmados']
272
- fig = make_subplots(specs=[[{"secondary_y": True}]])
273
- CC = go.Scatter(x=df['GT Index'].index,
274
- y=df['GT Index'].values, name='GT index',
275
- line=dict(color='dimgrey'))
276
- GT = go.Scatter(x=df['Nuevos Casos Confirmados'].index,
277
- y=df['Nuevos Casos Confirmados'].values,
278
- name='Casos confirmados', line=dict(color='darkred'))
279
- fig.add_trace(CC, secondary_y=False,)
280
- fig.add_trace(GT, secondary_y=True,)
281
- fig.layout.update(title_text="Evolución {}".format(p),
282
- xaxis_rangeslider_visible=True, margin_b=20,
283
- margin_r=20, margin_l=20,
284
- width=ancho, height=largo,
285
- legend=dict(orientation="h",
286
- yanchor="bottom",
287
- y=1.02,
288
- xanchor="right",
289
- x=1))
290
- link_excel = get_table_excel_link(df, "Correlacion GT.xlsx")
291
- if i % 2 == 0:
292
- cols[0].plotly_chart(fig, use_container_width=True)
293
- cols[0].markdown(link_excel, unsafe_allow_html=True)
294
- else:
295
- cols[1].plotly_chart(fig, use_container_width=True)
296
- cols[1].markdown(link_excel, unsafe_allow_html=True)
297
- cols = st.columns(2)
298
- col1, col2, col3, col4 = st.columns((1.5, 7, 2, 7))
299
- i = i + 1
300
- percent_complete = percent_complete + 34
301
- my_bar.progress(percent_complete)
302
- my_bar.empty()
303
-
304
-
305
-
306
- @log
307
- def vacunas():
308
- largo = 400
309
- ancho = 550
310
- button_style()
311
- vac_data = pd.read_csv('https://covid.ourworldindata.org/data/owid-covid-data.csv').set_index(['date','location'])
312
- country_pop = (vac_data['population'].reset_index().set_index('location')
313
- .drop(columns='date').squeeze().drop_duplicates())
314
- min_pop = 1000000
315
- idx = country_pop[country_pop > min_pop].index
316
- vac_data = vac_data['total_vaccinations_per_hundred'].unstack().ffill().fillna(0)
317
- vac_data.index = pd.to_datetime(vac_data.index)
318
- N = 15
319
- top_vac = vac_data[idx].iloc[-1].nlargest(N).sort_values()
320
- regiones = {}
321
- regiones['Latam'] = ['Argentina', 'Brazil', 'Chile', 'Colombia',
322
- 'Mexico', 'Peru']
323
- regiones['Europa'] = ['Italy', 'Spain', 'Germany', 'United Kingdom',
324
- 'France', 'Russia']
325
- regiones['Asia Emergente'] = ['South Korea', 'Taiwan', 'Hong Kong',
326
- 'China', 'Japan']
327
- regiones['Norteamérica'] = ['United States', 'Canada']
328
- inicio = datetime(2020, 11, 15)
329
- vac_data = vac_data.loc[vac_data.index > inicio].resample('W').last()
330
- vac_data.index.name = ''
331
- colores = colores_corporativos().values()
332
- colores = list(colores_corporativos().values())
333
- colores2 = []
334
- for i in range(len(colores)):
335
- colores2.append("rgb"+str(colores[i]))
336
-
337
- def plot_raw_data():
338
- i = 0
339
- cols = st.columns(2)
340
- col1, col2, col3, col4 = st.columns((1.5, 7, 2, 7))
341
- for region in list(regiones.keys()):
342
- fig = go.Figure()
343
- j = 0
344
- for pais in regiones[region]:
345
- data_pais = vac_data[regiones[region]][pais]
346
- pais_gr = go.Scatter(x=data_pais.index,
347
- y=data_pais.values, name=pais,
348
- line=dict(color=colores2[j]))
349
- fig.add_trace(pais_gr)
350
- j = j+1
351
- fig.layout.update(title_text="Evolución "+region,
352
- xaxis_rangeslider_visible=True, height=largo,
353
- width=ancho, margin_b=20,
354
- legend=dict(orientation="h",
355
- yanchor="bottom",
356
- y=1.0,
357
- xanchor="right",
358
- x=1))
359
- link_excel = get_table_excel_link(data_pais, "Vacunacion.xlsx")
360
- if i % 2 == 0:
361
- cols[0].plotly_chart(fig, use_column_width=True)
362
- cols[0].markdown(link_excel, unsafe_allow_html=True)
363
- else:
364
- cols[1].plotly_chart(fig, use_column_width=True)
365
- cols[1].markdown(link_excel, unsafe_allow_html=True)
366
- cols = st.columns(2)
367
- col1, col2, col3, col4 = st.columns((1.5, 7, 2, 7))
368
- i = i+1
369
- plot_raw_data()
 
1
  import streamlit as st
2
+ st.write("Covid View Turn Off")