Fioceen's picture
Add files
128f42e
raw
history blame
7.49 kB
"""
utils.py
Helper functions for image postprocessing, including EXIF removal, noise addition,
color correction, and Fourier spectrum matching.
"""
from PIL import Image, ImageOps
import numpy as np
try:
import cv2
_HAS_CV2 = True
except Exception:
cv2 = None
_HAS_CV2 = False
from scipy.ndimage import gaussian_filter1d
def remove_exif_pil(img: Image.Image) -> Image.Image:
data = img.tobytes()
new = Image.frombytes(img.mode, img.size, data)
return new
def add_gaussian_noise(img_arr: np.ndarray, std_frac=0.02, seed=None) -> np.ndarray:
if seed is not None:
np.random.seed(seed)
std = std_frac * 255.0
noise = np.random.normal(loc=0.0, scale=std, size=img_arr.shape)
out = img_arr.astype(np.float32) + noise
out = np.clip(out, 0, 255).astype(np.uint8)
return out
def clahe_color_correction(img_arr: np.ndarray, clip_limit=2.0, tile_grid_size=(8,8)) -> np.ndarray:
if _HAS_CV2:
lab = cv2.cvtColor(img_arr, cv2.COLOR_RGB2LAB)
l, a, b = cv2.split(lab)
clahe = cv2.createCLAHE(clipLimit=clip_limit, tileGridSize=tile_grid_size)
l2 = clahe.apply(l)
lab2 = cv2.merge((l2, a, b))
out = cv2.cvtColor(lab2, cv2.COLOR_LAB2RGB)
return out
else:
pil = Image.fromarray(img_arr)
channels = pil.split()
new_ch = []
for ch in channels:
eq = ImageOps.equalize(ch)
new_ch.append(eq)
merged = Image.merge('RGB', new_ch)
return np.array(merged)
def randomized_perturbation(img_arr: np.ndarray, magnitude_frac=0.008, seed=None) -> np.ndarray:
if seed is not None:
np.random.seed(seed)
mag = magnitude_frac * 255.0
perturb = np.random.uniform(low=-mag, high=mag, size=img_arr.shape)
out = img_arr.astype(np.float32) + perturb
out = np.clip(out, 0, 255).astype(np.uint8)
return out
def radial_profile(mag: np.ndarray, center=None, nbins=None):
h, w = mag.shape
if center is None:
cy, cx = h // 2, w // 2
else:
cy, cx = center
if nbins is None:
nbins = int(max(h, w) / 2)
nbins = max(1, int(nbins))
y = np.arange(h) - cy
x = np.arange(w) - cx
X, Y = np.meshgrid(x, y)
R = np.sqrt(X * X + Y * Y)
Rmax = R.max()
if Rmax <= 0:
Rnorm = R
else:
Rnorm = R / (Rmax + 1e-12)
Rnorm = np.minimum(Rnorm, 1.0 - 1e-12)
bin_edges = np.linspace(0.0, 1.0, nbins + 1)
bin_idx = np.digitize(Rnorm.ravel(), bin_edges) - 1
bin_idx = np.clip(bin_idx, 0, nbins - 1)
sums = np.bincount(bin_idx, weights=mag.ravel(), minlength=nbins)
counts = np.bincount(bin_idx, minlength=nbins)
radial_mean = np.zeros(nbins, dtype=np.float64)
nonzero = counts > 0
radial_mean[nonzero] = sums[nonzero] / counts[nonzero]
bin_centers = 0.5 * (bin_edges[:-1] + bin_edges[1:])
return bin_centers, radial_mean
def fourier_match_spectrum(img_arr: np.ndarray,
ref_img_arr: np.ndarray = None,
mode='auto',
alpha=1.0,
cutoff=0.25,
strength=0.9,
randomness=0.05,
phase_perturb=0.08,
radial_smooth=5,
seed=None):
if seed is not None:
rng = np.random.default_rng(seed)
else:
rng = np.random.default_rng()
h, w = img_arr.shape[:2]
cy, cx = h // 2, w // 2
nbins = max(8, int(max(h, w) / 2))
if mode == 'auto':
mode = 'ref' if ref_img_arr is not None else 'model'
bin_centers_src = np.linspace(0.0, 1.0, nbins)
model_radial = None
if mode == 'model':
eps = 1e-8
model_radial = (1.0 / (bin_centers_src + eps)) ** (alpha / 2.0)
lf = max(1, nbins // 8)
model_radial = model_radial / (np.median(model_radial[:lf]) + 1e-12)
model_radial = gaussian_filter1d(model_radial, sigma=max(1, radial_smooth))
ref_radial = None
ref_bin_centers = None
if mode == 'ref' and ref_img_arr is not None:
if ref_img_arr.shape[0] != h or ref_img_arr.shape[1] != w:
ref_img = Image.fromarray(ref_img_arr).resize((w, h), resample=Image.BICUBIC)
ref_img_arr = np.array(ref_img)
ref_gray = np.mean(ref_img_arr.astype(np.float32), axis=2) if ref_img_arr.ndim == 3 else ref_img_arr.astype(np.float32)
Fref = np.fft.fftshift(np.fft.fft2(ref_gray))
Mref = np.abs(Fref)
ref_bin_centers, ref_radial = radial_profile(Mref, center=(h // 2, w // 2), nbins=nbins)
ref_radial = gaussian_filter1d(ref_radial, sigma=max(1, radial_smooth))
out = np.zeros_like(img_arr, dtype=np.float32)
y = np.linspace(-1, 1, h, endpoint=False)[:, None]
x = np.linspace(-1, 1, w, endpoint=False)[None, :]
r = np.sqrt(x * x + y * y)
r = np.clip(r, 0.0, 1.0 - 1e-6)
for c in range(img_arr.shape[2]):
channel = img_arr[:, :, c].astype(np.float32)
F = np.fft.fft2(channel)
Fshift = np.fft.fftshift(F)
mag = np.abs(Fshift)
phase = np.angle(Fshift)
bin_centers_src_calc, src_radial = radial_profile(mag, center=(h // 2, w // 2), nbins=nbins)
src_radial = gaussian_filter1d(src_radial, sigma=max(1, radial_smooth))
bin_centers_src = bin_centers_src_calc
if mode == 'ref' and ref_radial is not None:
ref_interp = np.interp(bin_centers_src, ref_bin_centers, ref_radial)
eps = 1e-8
ratio = (ref_interp + eps) / (src_radial + eps)
desired_radial = src_radial * ratio
elif mode == 'model' and model_radial is not None:
lf = max(1, nbins // 8)
scale = (np.median(src_radial[:lf]) + 1e-12) / (np.median(model_radial[:lf]) + 1e-12)
desired_radial = model_radial * scale
else:
desired_radial = src_radial.copy()
eps = 1e-8
multiplier_1d = (desired_radial + eps) / (src_radial + eps)
multiplier_1d = np.clip(multiplier_1d, 0.2, 5.0)
mult_2d = np.interp(r.ravel(), bin_centers_src, multiplier_1d).reshape(h, w)
edge = 0.05 + 0.02 * (1.0 - cutoff) if 'cutoff' in globals() else 0.05
edge = max(edge, 1e-6)
weight = np.where(r <= 0.25, 1.0,
np.where(r <= 0.25 + edge,
0.5 * (1 + np.cos(np.pi * (r - 0.25) / edge)),
0.0))
final_multiplier = 1.0 + (mult_2d - 1.0) * (weight * strength)
if randomness and randomness > 0.0:
noise = rng.normal(loc=1.0, scale=randomness, size=final_multiplier.shape)
final_multiplier *= (1.0 + (noise - 1.0) * weight)
mag2 = mag * final_multiplier
if phase_perturb and phase_perturb > 0.0:
phase_sigma = phase_perturb * np.clip((r - 0.25) / (1.0 - 0.25 + 1e-6), 0.0, 1.0)
phase_noise = rng.standard_normal(size=phase_sigma.shape) * phase_sigma
phase2 = phase + phase_noise
else:
phase2 = phase
Fshift2 = mag2 * np.exp(1j * phase2)
F_ishift = np.fft.ifftshift(Fshift2)
img_back = np.fft.ifft2(F_ishift)
img_back = np.real(img_back)
blended = (1.0 - strength) * channel + strength * img_back
out[:, :, c] = blended
out = np.clip(out, 0, 255).astype(np.uint8)
return out