Update app to have the single trained adapter
Browse files
app.py
CHANGED
@@ -1,10 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
import re
|
3 |
-
from transformers import AutoTokenizer
|
4 |
from adapters import AutoAdapterModel
|
5 |
-
from transformers import TextClassificationPipeline
|
6 |
-
import gradio as gr
|
7 |
-
from transformers import pipeline
|
8 |
|
9 |
def preprocess(issue):
|
10 |
issue = re.sub(r'```.*?```', ' ', issue, flags=re.DOTALL)
|
@@ -18,7 +15,7 @@ def preprocess(issue):
|
|
18 |
def text_classification(text):
|
19 |
tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-base", max_length=256, truncation=True, padding="max_length")
|
20 |
model = AutoAdapterModel.from_pretrained("FacebookAI/roberta-base")
|
21 |
-
adapter_react = model.load_adapter("buelfhood/irc-
|
22 |
classifier = TextClassificationPipeline(model=model, tokenizer=tokenizer, max_length=256, padding="max_length", truncation=True,top_k=None)
|
23 |
preprocessed_issue = preprocess (text)
|
24 |
out = classifier(preprocessed_issue)[0]
|
@@ -31,9 +28,7 @@ io = gr.Interface(fn=text_classification,
|
|
31 |
inputs= gr.Textbox(lines=20, label="Text", placeholder="Enter title here..."),
|
32 |
outputs="label",
|
33 |
title="Issue Report Classification",
|
34 |
-
description="Enter a text of an issue and see whether it is a bug,
|
35 |
examples=examples)
|
36 |
|
37 |
-
io.launch(share=True)
|
38 |
-
|
39 |
-
|
|
|
1 |
import gradio as gr
|
2 |
import re
|
3 |
+
from transformers import AutoTokenizer,TextClassificationPipeline
|
4 |
from adapters import AutoAdapterModel
|
|
|
|
|
|
|
5 |
|
6 |
def preprocess(issue):
|
7 |
issue = re.sub(r'```.*?```', ' ', issue, flags=re.DOTALL)
|
|
|
15 |
def text_classification(text):
|
16 |
tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-base", max_length=256, truncation=True, padding="max_length")
|
17 |
model = AutoAdapterModel.from_pretrained("FacebookAI/roberta-base")
|
18 |
+
adapter_react = model.load_adapter("buelfhood/irc-single-adapter", source = "hf",set_active=True)
|
19 |
classifier = TextClassificationPipeline(model=model, tokenizer=tokenizer, max_length=256, padding="max_length", truncation=True,top_k=None)
|
20 |
preprocessed_issue = preprocess (text)
|
21 |
out = classifier(preprocessed_issue)[0]
|
|
|
28 |
inputs= gr.Textbox(lines=20, label="Text", placeholder="Enter title here..."),
|
29 |
outputs="label",
|
30 |
title="Issue Report Classification",
|
31 |
+
description="Enter a text of an issue and see whether it is a bug, feature or question?",
|
32 |
examples=examples)
|
33 |
|
34 |
+
io.launch(share=True)
|
|
|
|