Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,8 @@ import os, torch
|
|
5 |
from datasets import load_dataset
|
6 |
from huggingface_hub import HfApi, login
|
7 |
#from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training
|
8 |
-
from
|
|
|
9 |
|
10 |
ACTION_1 = "Prompt base model"
|
11 |
ACTION_2 = "Fine-tune base model"
|
@@ -79,7 +80,7 @@ def fine_tune_model(base_model_name, dataset_name):
|
|
79 |
|
80 |
# Configure training arguments
|
81 |
|
82 |
-
training_args =
|
83 |
output_dir=f"./{FT_MODEL_NAME}",
|
84 |
num_train_epochs=3, # 37,500 steps
|
85 |
max_steps=1, # overwrites num_train_epochs
|
@@ -110,11 +111,18 @@ def fine_tune_model(base_model_name, dataset_name):
|
|
110 |
#print("### PEFT")
|
111 |
#model.print_trainable_parameters() # trainable params: 6,815,744 || all params: 8,037,076,992 || trainable%: 0.0848
|
112 |
#print("###")
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
# Create trainer
|
115 |
|
116 |
-
trainer =
|
117 |
-
model=
|
118 |
args=training_args,
|
119 |
train_dataset=train_dataset,
|
120 |
eval_dataset=eval_dataset,
|
|
|
5 |
from datasets import load_dataset
|
6 |
from huggingface_hub import HfApi, login
|
7 |
#from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training
|
8 |
+
from peft import PeftModel
|
9 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, Seq2SeqTrainer, Seq2SeqTrainingArguments, Trainer, TrainingArguments, pipeline
|
10 |
|
11 |
ACTION_1 = "Prompt base model"
|
12 |
ACTION_2 = "Fine-tune base model"
|
|
|
80 |
|
81 |
# Configure training arguments
|
82 |
|
83 |
+
training_args = TrainingArguments(
|
84 |
output_dir=f"./{FT_MODEL_NAME}",
|
85 |
num_train_epochs=3, # 37,500 steps
|
86 |
max_steps=1, # overwrites num_train_epochs
|
|
|
111 |
#print("### PEFT")
|
112 |
#model.print_trainable_parameters() # trainable params: 6,815,744 || all params: 8,037,076,992 || trainable%: 0.0848
|
113 |
#print("###")
|
114 |
+
|
115 |
+
peft_model = PeftModel.from_pretrained(
|
116 |
+
BASE_MODEL_NAME,
|
117 |
+
tokenizer=tokenizer,
|
118 |
+
adapter_name="lora",
|
119 |
+
adapter_dim=16,
|
120 |
+
)
|
121 |
+
|
122 |
# Create trainer
|
123 |
|
124 |
+
trainer = Trainer(
|
125 |
+
model=peft_model,
|
126 |
args=training_args,
|
127 |
train_dataset=train_dataset,
|
128 |
eval_dataset=eval_dataset,
|