Update app.py
Browse files
app.py
CHANGED
@@ -67,10 +67,10 @@ def fine_tune_model(base_model_name, dataset_name):
|
|
67 |
|
68 |
# Split dataset into training and validation sets
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
train_dataset = dataset["train"].shuffle(seed=42).select(range(1000))
|
73 |
-
test_dataset = dataset["test"].shuffle(seed=42).select(range(100))
|
74 |
|
75 |
print("### Training dataset")
|
76 |
print(train_dataset)
|
@@ -86,6 +86,7 @@ def fine_tune_model(base_model_name, dataset_name):
|
|
86 |
num_train_epochs=1,
|
87 |
max_steps=1, # overwrites num_train_epochs
|
88 |
push_to_hub=True, # only model, also need to push tokenizer
|
|
|
89 |
#per_device_train_batch_size=16,
|
90 |
#per_device_eval_batch_size=64,
|
91 |
#eval_strategy="steps",
|
@@ -111,6 +112,7 @@ def fine_tune_model(base_model_name, dataset_name):
|
|
111 |
args=training_args,
|
112 |
train_dataset=train_dataset,
|
113 |
eval_dataset=test_dataset,
|
|
|
114 |
#compute_metrics=lambda pred: {"accuracy": torch.sum(pred.label_ids == pred.predictions.argmax(-1))},
|
115 |
)
|
116 |
|
|
|
67 |
|
68 |
# Split dataset into training and validation sets
|
69 |
|
70 |
+
train_dataset = dataset["train"]
|
71 |
+
test_dataset = dataset["test"]
|
72 |
+
#train_dataset = dataset["train"].shuffle(seed=42).select(range(1000))
|
73 |
+
#test_dataset = dataset["test"].shuffle(seed=42).select(range(100))
|
74 |
|
75 |
print("### Training dataset")
|
76 |
print(train_dataset)
|
|
|
86 |
num_train_epochs=1,
|
87 |
max_steps=1, # overwrites num_train_epochs
|
88 |
push_to_hub=True, # only model, also need to push tokenizer
|
89 |
+
### TODO ###
|
90 |
#per_device_train_batch_size=16,
|
91 |
#per_device_eval_batch_size=64,
|
92 |
#eval_strategy="steps",
|
|
|
112 |
args=training_args,
|
113 |
train_dataset=train_dataset,
|
114 |
eval_dataset=test_dataset,
|
115 |
+
### TODO ###
|
116 |
#compute_metrics=lambda pred: {"accuracy": torch.sum(pred.label_ids == pred.predictions.argmax(-1))},
|
117 |
)
|
118 |
|