Spaces:
Running
Running
Create mongodb.py
Browse files- mongodb.py +77 -0
mongodb.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
|
3 |
+
from pymongo.mongo_client import MongoClient
|
4 |
+
from pymongo.operations import SearchIndexModel
|
5 |
+
|
6 |
+
database_name = "airbnb_dataset"
|
7 |
+
collection_name = "listings_reviews"
|
8 |
+
|
9 |
+
def get_mongo_client(mongo_uri):
|
10 |
+
"""Establish connection to the MongoDB."""
|
11 |
+
|
12 |
+
# gateway to interacting with a MongoDB database cluster
|
13 |
+
client = MongoClient(mongo_uri, appname="devrel.deeplearningai.lesson1.python")
|
14 |
+
print("Connection to MongoDB successful")
|
15 |
+
return client
|
16 |
+
|
17 |
+
if not MONGO_URI:
|
18 |
+
print("MONGO_URI not set in environment variables")
|
19 |
+
|
20 |
+
def create_db():
|
21 |
+
mongo_client = get_mongo_client(MONGO_URI)
|
22 |
+
|
23 |
+
# Pymongo client of database and collection
|
24 |
+
db = mongo_client.get_database(database_name)
|
25 |
+
collection = db.get_collection(collection_name)
|
26 |
+
|
27 |
+
# Delete any existing records in the collection
|
28 |
+
collection.delete_many({})
|
29 |
+
|
30 |
+
def ingest_data():
|
31 |
+
# The ingestion process might take a few minutes
|
32 |
+
collection.insert_many(listings)
|
33 |
+
print("Data ingestion into MongoDB completed")
|
34 |
+
|
35 |
+
def create_vector_search_index():
|
36 |
+
# NOTE: This dataset contains text and image embeddings, but this lessons only uses the text embeddings
|
37 |
+
# The field containing the text embeddings on each document within the listings_reviews collection
|
38 |
+
text_embedding_field_name = "text_embeddings"
|
39 |
+
# MongoDB Atlas Vector Search index name
|
40 |
+
vector_search_index_name_text = "vector_index_text"
|
41 |
+
|
42 |
+
vector_search_index_model = SearchIndexModel(
|
43 |
+
definition={
|
44 |
+
"mappings": { # describes how fields in the database documents are indexed and stored
|
45 |
+
"dynamic": True, # automatically index new fields that appear in the document
|
46 |
+
"fields": { # properties of the fields that will be indexed.
|
47 |
+
text_embedding_field_name: {
|
48 |
+
"dimensions": 1536, # size of the vector.
|
49 |
+
"similarity": "cosine", # algorithm used to compute the similarity between vectors
|
50 |
+
"type": "knnVector",
|
51 |
+
}
|
52 |
+
},
|
53 |
+
}
|
54 |
+
},
|
55 |
+
name=vector_search_index_name_text, # identifier for the vector search index
|
56 |
+
)
|
57 |
+
|
58 |
+
# Check if the index already exists
|
59 |
+
index_exists = False
|
60 |
+
for index in collection.list_indexes():
|
61 |
+
print(index)
|
62 |
+
if index['name'] == vector_search_index_name_text:
|
63 |
+
index_exists = True
|
64 |
+
break
|
65 |
+
|
66 |
+
# Create the index if it doesn't exist
|
67 |
+
if not index_exists:
|
68 |
+
try:
|
69 |
+
result = collection.create_search_index(model=vector_search_index_model)
|
70 |
+
print("Creating index...")
|
71 |
+
time.sleep(20) # Sleep for 20 seconds, adding sleep to ensure vector index has compeleted inital sync before utilization
|
72 |
+
print("Index created successfully:", result)
|
73 |
+
print("Wait a few minutes before conducting search with index to ensure index intialization")
|
74 |
+
except Exception as e:
|
75 |
+
print(f"Error creating vector search index: {str(e)}")
|
76 |
+
else:
|
77 |
+
print(f"Index '{vector_search_index_name_text}' already exists.")
|