Spaces:
Runtime error
Runtime error
Upload 12 files
Browse files- .gitattributes +2 -0
- Person/101231186_1701957441.jpg +0 -0
- Person/101231186_1701958029.jpg +0 -0
- Person/101231186_1701964291.jpg +0 -0
- Person/10123_1701964199.jpg +0 -0
- Person/123_1702026855.jpg +0 -0
- PreTrained_coco.names +80 -0
- PreTrained_yolov4.cfg +1157 -0
- __pycache__/anti_spoofing.cpython-311.pyc +0 -0
- anti_spoofing.py +232 -0
- app.py +61 -0
- shape_predictor_68_face_landmarks.dat +3 -0
- yolov4.weights +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
shape_predictor_68_face_landmarks.dat filter=lfs diff=lfs merge=lfs -text
|
37 |
+
yolov4.weights filter=lfs diff=lfs merge=lfs -text
|
Person/101231186_1701957441.jpg
ADDED
Person/101231186_1701958029.jpg
ADDED
Person/101231186_1701964291.jpg
ADDED
Person/10123_1701964199.jpg
ADDED
Person/123_1702026855.jpg
ADDED
PreTrained_coco.names
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
person
|
2 |
+
bicycle
|
3 |
+
car
|
4 |
+
motorbike
|
5 |
+
aeroplane
|
6 |
+
bus
|
7 |
+
train
|
8 |
+
truck
|
9 |
+
boat
|
10 |
+
traffic light
|
11 |
+
fire hydrant
|
12 |
+
stop sign
|
13 |
+
parking meter
|
14 |
+
bench
|
15 |
+
bird
|
16 |
+
cat
|
17 |
+
dog
|
18 |
+
horse
|
19 |
+
sheep
|
20 |
+
cow
|
21 |
+
elephant
|
22 |
+
bear
|
23 |
+
zebra
|
24 |
+
giraffe
|
25 |
+
backpack
|
26 |
+
umbrella
|
27 |
+
handbag
|
28 |
+
tie
|
29 |
+
suitcase
|
30 |
+
frisbee
|
31 |
+
skis
|
32 |
+
snowboard
|
33 |
+
sports ball
|
34 |
+
kite
|
35 |
+
baseball bat
|
36 |
+
baseball glove
|
37 |
+
skateboard
|
38 |
+
surfboard
|
39 |
+
tennis racket
|
40 |
+
bottle
|
41 |
+
wine glass
|
42 |
+
cup
|
43 |
+
fork
|
44 |
+
knife
|
45 |
+
spoon
|
46 |
+
bowl
|
47 |
+
banana
|
48 |
+
apple
|
49 |
+
sandwich
|
50 |
+
orange
|
51 |
+
broccoli
|
52 |
+
carrot
|
53 |
+
hot dog
|
54 |
+
pizza
|
55 |
+
donut
|
56 |
+
cake
|
57 |
+
chair
|
58 |
+
sofa
|
59 |
+
pottedplant
|
60 |
+
bed
|
61 |
+
diningtable
|
62 |
+
toilet
|
63 |
+
tvmonitor
|
64 |
+
laptop
|
65 |
+
mouse
|
66 |
+
remote
|
67 |
+
keyboard
|
68 |
+
cell phone
|
69 |
+
microwave
|
70 |
+
oven
|
71 |
+
toaster
|
72 |
+
sink
|
73 |
+
refrigerator
|
74 |
+
book
|
75 |
+
clock
|
76 |
+
vase
|
77 |
+
scissors
|
78 |
+
teddy bear
|
79 |
+
hair drier
|
80 |
+
toothbrush
|
PreTrained_yolov4.cfg
ADDED
@@ -0,0 +1,1157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[net]
|
2 |
+
batch=64
|
3 |
+
subdivisions=8
|
4 |
+
# Training
|
5 |
+
#width=512
|
6 |
+
#height=512
|
7 |
+
width=608
|
8 |
+
height=608
|
9 |
+
channels=3
|
10 |
+
momentum=0.949
|
11 |
+
decay=0.0005
|
12 |
+
angle=0
|
13 |
+
saturation = 1.5
|
14 |
+
exposure = 1.5
|
15 |
+
hue=.1
|
16 |
+
|
17 |
+
learning_rate=0.0013
|
18 |
+
burn_in=1000
|
19 |
+
max_batches = 500500
|
20 |
+
policy=steps
|
21 |
+
steps=400000,450000
|
22 |
+
scales=.1,.1
|
23 |
+
|
24 |
+
#cutmix=1
|
25 |
+
mosaic=1
|
26 |
+
|
27 |
+
#:104x104 54:52x52 85:26x26 104:13x13 for 416
|
28 |
+
|
29 |
+
[convolutional]
|
30 |
+
batch_normalize=1
|
31 |
+
filters=32
|
32 |
+
size=3
|
33 |
+
stride=1
|
34 |
+
pad=1
|
35 |
+
activation=mish
|
36 |
+
|
37 |
+
# Downsample
|
38 |
+
|
39 |
+
[convolutional]
|
40 |
+
batch_normalize=1
|
41 |
+
filters=64
|
42 |
+
size=3
|
43 |
+
stride=2
|
44 |
+
pad=1
|
45 |
+
activation=mish
|
46 |
+
|
47 |
+
[convolutional]
|
48 |
+
batch_normalize=1
|
49 |
+
filters=64
|
50 |
+
size=1
|
51 |
+
stride=1
|
52 |
+
pad=1
|
53 |
+
activation=mish
|
54 |
+
|
55 |
+
[route]
|
56 |
+
layers = -2
|
57 |
+
|
58 |
+
[convolutional]
|
59 |
+
batch_normalize=1
|
60 |
+
filters=64
|
61 |
+
size=1
|
62 |
+
stride=1
|
63 |
+
pad=1
|
64 |
+
activation=mish
|
65 |
+
|
66 |
+
[convolutional]
|
67 |
+
batch_normalize=1
|
68 |
+
filters=32
|
69 |
+
size=1
|
70 |
+
stride=1
|
71 |
+
pad=1
|
72 |
+
activation=mish
|
73 |
+
|
74 |
+
[convolutional]
|
75 |
+
batch_normalize=1
|
76 |
+
filters=64
|
77 |
+
size=3
|
78 |
+
stride=1
|
79 |
+
pad=1
|
80 |
+
activation=mish
|
81 |
+
|
82 |
+
[shortcut]
|
83 |
+
from=-3
|
84 |
+
activation=linear
|
85 |
+
|
86 |
+
[convolutional]
|
87 |
+
batch_normalize=1
|
88 |
+
filters=64
|
89 |
+
size=1
|
90 |
+
stride=1
|
91 |
+
pad=1
|
92 |
+
activation=mish
|
93 |
+
|
94 |
+
[route]
|
95 |
+
layers = -1,-7
|
96 |
+
|
97 |
+
[convolutional]
|
98 |
+
batch_normalize=1
|
99 |
+
filters=64
|
100 |
+
size=1
|
101 |
+
stride=1
|
102 |
+
pad=1
|
103 |
+
activation=mish
|
104 |
+
|
105 |
+
# Downsample
|
106 |
+
|
107 |
+
[convolutional]
|
108 |
+
batch_normalize=1
|
109 |
+
filters=128
|
110 |
+
size=3
|
111 |
+
stride=2
|
112 |
+
pad=1
|
113 |
+
activation=mish
|
114 |
+
|
115 |
+
[convolutional]
|
116 |
+
batch_normalize=1
|
117 |
+
filters=64
|
118 |
+
size=1
|
119 |
+
stride=1
|
120 |
+
pad=1
|
121 |
+
activation=mish
|
122 |
+
|
123 |
+
[route]
|
124 |
+
layers = -2
|
125 |
+
|
126 |
+
[convolutional]
|
127 |
+
batch_normalize=1
|
128 |
+
filters=64
|
129 |
+
size=1
|
130 |
+
stride=1
|
131 |
+
pad=1
|
132 |
+
activation=mish
|
133 |
+
|
134 |
+
[convolutional]
|
135 |
+
batch_normalize=1
|
136 |
+
filters=64
|
137 |
+
size=1
|
138 |
+
stride=1
|
139 |
+
pad=1
|
140 |
+
activation=mish
|
141 |
+
|
142 |
+
[convolutional]
|
143 |
+
batch_normalize=1
|
144 |
+
filters=64
|
145 |
+
size=3
|
146 |
+
stride=1
|
147 |
+
pad=1
|
148 |
+
activation=mish
|
149 |
+
|
150 |
+
[shortcut]
|
151 |
+
from=-3
|
152 |
+
activation=linear
|
153 |
+
|
154 |
+
[convolutional]
|
155 |
+
batch_normalize=1
|
156 |
+
filters=64
|
157 |
+
size=1
|
158 |
+
stride=1
|
159 |
+
pad=1
|
160 |
+
activation=mish
|
161 |
+
|
162 |
+
[convolutional]
|
163 |
+
batch_normalize=1
|
164 |
+
filters=64
|
165 |
+
size=3
|
166 |
+
stride=1
|
167 |
+
pad=1
|
168 |
+
activation=mish
|
169 |
+
|
170 |
+
[shortcut]
|
171 |
+
from=-3
|
172 |
+
activation=linear
|
173 |
+
|
174 |
+
[convolutional]
|
175 |
+
batch_normalize=1
|
176 |
+
filters=64
|
177 |
+
size=1
|
178 |
+
stride=1
|
179 |
+
pad=1
|
180 |
+
activation=mish
|
181 |
+
|
182 |
+
[route]
|
183 |
+
layers = -1,-10
|
184 |
+
|
185 |
+
[convolutional]
|
186 |
+
batch_normalize=1
|
187 |
+
filters=128
|
188 |
+
size=1
|
189 |
+
stride=1
|
190 |
+
pad=1
|
191 |
+
activation=mish
|
192 |
+
|
193 |
+
# Downsample
|
194 |
+
|
195 |
+
[convolutional]
|
196 |
+
batch_normalize=1
|
197 |
+
filters=256
|
198 |
+
size=3
|
199 |
+
stride=2
|
200 |
+
pad=1
|
201 |
+
activation=mish
|
202 |
+
|
203 |
+
[convolutional]
|
204 |
+
batch_normalize=1
|
205 |
+
filters=128
|
206 |
+
size=1
|
207 |
+
stride=1
|
208 |
+
pad=1
|
209 |
+
activation=mish
|
210 |
+
|
211 |
+
[route]
|
212 |
+
layers = -2
|
213 |
+
|
214 |
+
[convolutional]
|
215 |
+
batch_normalize=1
|
216 |
+
filters=128
|
217 |
+
size=1
|
218 |
+
stride=1
|
219 |
+
pad=1
|
220 |
+
activation=mish
|
221 |
+
|
222 |
+
[convolutional]
|
223 |
+
batch_normalize=1
|
224 |
+
filters=128
|
225 |
+
size=1
|
226 |
+
stride=1
|
227 |
+
pad=1
|
228 |
+
activation=mish
|
229 |
+
|
230 |
+
[convolutional]
|
231 |
+
batch_normalize=1
|
232 |
+
filters=128
|
233 |
+
size=3
|
234 |
+
stride=1
|
235 |
+
pad=1
|
236 |
+
activation=mish
|
237 |
+
|
238 |
+
[shortcut]
|
239 |
+
from=-3
|
240 |
+
activation=linear
|
241 |
+
|
242 |
+
[convolutional]
|
243 |
+
batch_normalize=1
|
244 |
+
filters=128
|
245 |
+
size=1
|
246 |
+
stride=1
|
247 |
+
pad=1
|
248 |
+
activation=mish
|
249 |
+
|
250 |
+
[convolutional]
|
251 |
+
batch_normalize=1
|
252 |
+
filters=128
|
253 |
+
size=3
|
254 |
+
stride=1
|
255 |
+
pad=1
|
256 |
+
activation=mish
|
257 |
+
|
258 |
+
[shortcut]
|
259 |
+
from=-3
|
260 |
+
activation=linear
|
261 |
+
|
262 |
+
[convolutional]
|
263 |
+
batch_normalize=1
|
264 |
+
filters=128
|
265 |
+
size=1
|
266 |
+
stride=1
|
267 |
+
pad=1
|
268 |
+
activation=mish
|
269 |
+
|
270 |
+
[convolutional]
|
271 |
+
batch_normalize=1
|
272 |
+
filters=128
|
273 |
+
size=3
|
274 |
+
stride=1
|
275 |
+
pad=1
|
276 |
+
activation=mish
|
277 |
+
|
278 |
+
[shortcut]
|
279 |
+
from=-3
|
280 |
+
activation=linear
|
281 |
+
|
282 |
+
[convolutional]
|
283 |
+
batch_normalize=1
|
284 |
+
filters=128
|
285 |
+
size=1
|
286 |
+
stride=1
|
287 |
+
pad=1
|
288 |
+
activation=mish
|
289 |
+
|
290 |
+
[convolutional]
|
291 |
+
batch_normalize=1
|
292 |
+
filters=128
|
293 |
+
size=3
|
294 |
+
stride=1
|
295 |
+
pad=1
|
296 |
+
activation=mish
|
297 |
+
|
298 |
+
[shortcut]
|
299 |
+
from=-3
|
300 |
+
activation=linear
|
301 |
+
|
302 |
+
|
303 |
+
[convolutional]
|
304 |
+
batch_normalize=1
|
305 |
+
filters=128
|
306 |
+
size=1
|
307 |
+
stride=1
|
308 |
+
pad=1
|
309 |
+
activation=mish
|
310 |
+
|
311 |
+
[convolutional]
|
312 |
+
batch_normalize=1
|
313 |
+
filters=128
|
314 |
+
size=3
|
315 |
+
stride=1
|
316 |
+
pad=1
|
317 |
+
activation=mish
|
318 |
+
|
319 |
+
[shortcut]
|
320 |
+
from=-3
|
321 |
+
activation=linear
|
322 |
+
|
323 |
+
[convolutional]
|
324 |
+
batch_normalize=1
|
325 |
+
filters=128
|
326 |
+
size=1
|
327 |
+
stride=1
|
328 |
+
pad=1
|
329 |
+
activation=mish
|
330 |
+
|
331 |
+
[convolutional]
|
332 |
+
batch_normalize=1
|
333 |
+
filters=128
|
334 |
+
size=3
|
335 |
+
stride=1
|
336 |
+
pad=1
|
337 |
+
activation=mish
|
338 |
+
|
339 |
+
[shortcut]
|
340 |
+
from=-3
|
341 |
+
activation=linear
|
342 |
+
|
343 |
+
[convolutional]
|
344 |
+
batch_normalize=1
|
345 |
+
filters=128
|
346 |
+
size=1
|
347 |
+
stride=1
|
348 |
+
pad=1
|
349 |
+
activation=mish
|
350 |
+
|
351 |
+
[convolutional]
|
352 |
+
batch_normalize=1
|
353 |
+
filters=128
|
354 |
+
size=3
|
355 |
+
stride=1
|
356 |
+
pad=1
|
357 |
+
activation=mish
|
358 |
+
|
359 |
+
[shortcut]
|
360 |
+
from=-3
|
361 |
+
activation=linear
|
362 |
+
|
363 |
+
[convolutional]
|
364 |
+
batch_normalize=1
|
365 |
+
filters=128
|
366 |
+
size=1
|
367 |
+
stride=1
|
368 |
+
pad=1
|
369 |
+
activation=mish
|
370 |
+
|
371 |
+
[convolutional]
|
372 |
+
batch_normalize=1
|
373 |
+
filters=128
|
374 |
+
size=3
|
375 |
+
stride=1
|
376 |
+
pad=1
|
377 |
+
activation=mish
|
378 |
+
|
379 |
+
[shortcut]
|
380 |
+
from=-3
|
381 |
+
activation=linear
|
382 |
+
|
383 |
+
[convolutional]
|
384 |
+
batch_normalize=1
|
385 |
+
filters=128
|
386 |
+
size=1
|
387 |
+
stride=1
|
388 |
+
pad=1
|
389 |
+
activation=mish
|
390 |
+
|
391 |
+
[route]
|
392 |
+
layers = -1,-28
|
393 |
+
|
394 |
+
[convolutional]
|
395 |
+
batch_normalize=1
|
396 |
+
filters=256
|
397 |
+
size=1
|
398 |
+
stride=1
|
399 |
+
pad=1
|
400 |
+
activation=mish
|
401 |
+
|
402 |
+
# Downsample
|
403 |
+
|
404 |
+
[convolutional]
|
405 |
+
batch_normalize=1
|
406 |
+
filters=512
|
407 |
+
size=3
|
408 |
+
stride=2
|
409 |
+
pad=1
|
410 |
+
activation=mish
|
411 |
+
|
412 |
+
[convolutional]
|
413 |
+
batch_normalize=1
|
414 |
+
filters=256
|
415 |
+
size=1
|
416 |
+
stride=1
|
417 |
+
pad=1
|
418 |
+
activation=mish
|
419 |
+
|
420 |
+
[route]
|
421 |
+
layers = -2
|
422 |
+
|
423 |
+
[convolutional]
|
424 |
+
batch_normalize=1
|
425 |
+
filters=256
|
426 |
+
size=1
|
427 |
+
stride=1
|
428 |
+
pad=1
|
429 |
+
activation=mish
|
430 |
+
|
431 |
+
[convolutional]
|
432 |
+
batch_normalize=1
|
433 |
+
filters=256
|
434 |
+
size=1
|
435 |
+
stride=1
|
436 |
+
pad=1
|
437 |
+
activation=mish
|
438 |
+
|
439 |
+
[convolutional]
|
440 |
+
batch_normalize=1
|
441 |
+
filters=256
|
442 |
+
size=3
|
443 |
+
stride=1
|
444 |
+
pad=1
|
445 |
+
activation=mish
|
446 |
+
|
447 |
+
[shortcut]
|
448 |
+
from=-3
|
449 |
+
activation=linear
|
450 |
+
|
451 |
+
|
452 |
+
[convolutional]
|
453 |
+
batch_normalize=1
|
454 |
+
filters=256
|
455 |
+
size=1
|
456 |
+
stride=1
|
457 |
+
pad=1
|
458 |
+
activation=mish
|
459 |
+
|
460 |
+
[convolutional]
|
461 |
+
batch_normalize=1
|
462 |
+
filters=256
|
463 |
+
size=3
|
464 |
+
stride=1
|
465 |
+
pad=1
|
466 |
+
activation=mish
|
467 |
+
|
468 |
+
[shortcut]
|
469 |
+
from=-3
|
470 |
+
activation=linear
|
471 |
+
|
472 |
+
|
473 |
+
[convolutional]
|
474 |
+
batch_normalize=1
|
475 |
+
filters=256
|
476 |
+
size=1
|
477 |
+
stride=1
|
478 |
+
pad=1
|
479 |
+
activation=mish
|
480 |
+
|
481 |
+
[convolutional]
|
482 |
+
batch_normalize=1
|
483 |
+
filters=256
|
484 |
+
size=3
|
485 |
+
stride=1
|
486 |
+
pad=1
|
487 |
+
activation=mish
|
488 |
+
|
489 |
+
[shortcut]
|
490 |
+
from=-3
|
491 |
+
activation=linear
|
492 |
+
|
493 |
+
|
494 |
+
[convolutional]
|
495 |
+
batch_normalize=1
|
496 |
+
filters=256
|
497 |
+
size=1
|
498 |
+
stride=1
|
499 |
+
pad=1
|
500 |
+
activation=mish
|
501 |
+
|
502 |
+
[convolutional]
|
503 |
+
batch_normalize=1
|
504 |
+
filters=256
|
505 |
+
size=3
|
506 |
+
stride=1
|
507 |
+
pad=1
|
508 |
+
activation=mish
|
509 |
+
|
510 |
+
[shortcut]
|
511 |
+
from=-3
|
512 |
+
activation=linear
|
513 |
+
|
514 |
+
|
515 |
+
[convolutional]
|
516 |
+
batch_normalize=1
|
517 |
+
filters=256
|
518 |
+
size=1
|
519 |
+
stride=1
|
520 |
+
pad=1
|
521 |
+
activation=mish
|
522 |
+
|
523 |
+
[convolutional]
|
524 |
+
batch_normalize=1
|
525 |
+
filters=256
|
526 |
+
size=3
|
527 |
+
stride=1
|
528 |
+
pad=1
|
529 |
+
activation=mish
|
530 |
+
|
531 |
+
[shortcut]
|
532 |
+
from=-3
|
533 |
+
activation=linear
|
534 |
+
|
535 |
+
|
536 |
+
[convolutional]
|
537 |
+
batch_normalize=1
|
538 |
+
filters=256
|
539 |
+
size=1
|
540 |
+
stride=1
|
541 |
+
pad=1
|
542 |
+
activation=mish
|
543 |
+
|
544 |
+
[convolutional]
|
545 |
+
batch_normalize=1
|
546 |
+
filters=256
|
547 |
+
size=3
|
548 |
+
stride=1
|
549 |
+
pad=1
|
550 |
+
activation=mish
|
551 |
+
|
552 |
+
[shortcut]
|
553 |
+
from=-3
|
554 |
+
activation=linear
|
555 |
+
|
556 |
+
|
557 |
+
[convolutional]
|
558 |
+
batch_normalize=1
|
559 |
+
filters=256
|
560 |
+
size=1
|
561 |
+
stride=1
|
562 |
+
pad=1
|
563 |
+
activation=mish
|
564 |
+
|
565 |
+
[convolutional]
|
566 |
+
batch_normalize=1
|
567 |
+
filters=256
|
568 |
+
size=3
|
569 |
+
stride=1
|
570 |
+
pad=1
|
571 |
+
activation=mish
|
572 |
+
|
573 |
+
[shortcut]
|
574 |
+
from=-3
|
575 |
+
activation=linear
|
576 |
+
|
577 |
+
[convolutional]
|
578 |
+
batch_normalize=1
|
579 |
+
filters=256
|
580 |
+
size=1
|
581 |
+
stride=1
|
582 |
+
pad=1
|
583 |
+
activation=mish
|
584 |
+
|
585 |
+
[convolutional]
|
586 |
+
batch_normalize=1
|
587 |
+
filters=256
|
588 |
+
size=3
|
589 |
+
stride=1
|
590 |
+
pad=1
|
591 |
+
activation=mish
|
592 |
+
|
593 |
+
[shortcut]
|
594 |
+
from=-3
|
595 |
+
activation=linear
|
596 |
+
|
597 |
+
[convolutional]
|
598 |
+
batch_normalize=1
|
599 |
+
filters=256
|
600 |
+
size=1
|
601 |
+
stride=1
|
602 |
+
pad=1
|
603 |
+
activation=mish
|
604 |
+
|
605 |
+
[route]
|
606 |
+
layers = -1,-28
|
607 |
+
|
608 |
+
[convolutional]
|
609 |
+
batch_normalize=1
|
610 |
+
filters=512
|
611 |
+
size=1
|
612 |
+
stride=1
|
613 |
+
pad=1
|
614 |
+
activation=mish
|
615 |
+
|
616 |
+
# Downsample
|
617 |
+
|
618 |
+
[convolutional]
|
619 |
+
batch_normalize=1
|
620 |
+
filters=1024
|
621 |
+
size=3
|
622 |
+
stride=2
|
623 |
+
pad=1
|
624 |
+
activation=mish
|
625 |
+
|
626 |
+
[convolutional]
|
627 |
+
batch_normalize=1
|
628 |
+
filters=512
|
629 |
+
size=1
|
630 |
+
stride=1
|
631 |
+
pad=1
|
632 |
+
activation=mish
|
633 |
+
|
634 |
+
[route]
|
635 |
+
layers = -2
|
636 |
+
|
637 |
+
[convolutional]
|
638 |
+
batch_normalize=1
|
639 |
+
filters=512
|
640 |
+
size=1
|
641 |
+
stride=1
|
642 |
+
pad=1
|
643 |
+
activation=mish
|
644 |
+
|
645 |
+
[convolutional]
|
646 |
+
batch_normalize=1
|
647 |
+
filters=512
|
648 |
+
size=1
|
649 |
+
stride=1
|
650 |
+
pad=1
|
651 |
+
activation=mish
|
652 |
+
|
653 |
+
[convolutional]
|
654 |
+
batch_normalize=1
|
655 |
+
filters=512
|
656 |
+
size=3
|
657 |
+
stride=1
|
658 |
+
pad=1
|
659 |
+
activation=mish
|
660 |
+
|
661 |
+
[shortcut]
|
662 |
+
from=-3
|
663 |
+
activation=linear
|
664 |
+
|
665 |
+
[convolutional]
|
666 |
+
batch_normalize=1
|
667 |
+
filters=512
|
668 |
+
size=1
|
669 |
+
stride=1
|
670 |
+
pad=1
|
671 |
+
activation=mish
|
672 |
+
|
673 |
+
[convolutional]
|
674 |
+
batch_normalize=1
|
675 |
+
filters=512
|
676 |
+
size=3
|
677 |
+
stride=1
|
678 |
+
pad=1
|
679 |
+
activation=mish
|
680 |
+
|
681 |
+
[shortcut]
|
682 |
+
from=-3
|
683 |
+
activation=linear
|
684 |
+
|
685 |
+
[convolutional]
|
686 |
+
batch_normalize=1
|
687 |
+
filters=512
|
688 |
+
size=1
|
689 |
+
stride=1
|
690 |
+
pad=1
|
691 |
+
activation=mish
|
692 |
+
|
693 |
+
[convolutional]
|
694 |
+
batch_normalize=1
|
695 |
+
filters=512
|
696 |
+
size=3
|
697 |
+
stride=1
|
698 |
+
pad=1
|
699 |
+
activation=mish
|
700 |
+
|
701 |
+
[shortcut]
|
702 |
+
from=-3
|
703 |
+
activation=linear
|
704 |
+
|
705 |
+
[convolutional]
|
706 |
+
batch_normalize=1
|
707 |
+
filters=512
|
708 |
+
size=1
|
709 |
+
stride=1
|
710 |
+
pad=1
|
711 |
+
activation=mish
|
712 |
+
|
713 |
+
[convolutional]
|
714 |
+
batch_normalize=1
|
715 |
+
filters=512
|
716 |
+
size=3
|
717 |
+
stride=1
|
718 |
+
pad=1
|
719 |
+
activation=mish
|
720 |
+
|
721 |
+
[shortcut]
|
722 |
+
from=-3
|
723 |
+
activation=linear
|
724 |
+
|
725 |
+
[convolutional]
|
726 |
+
batch_normalize=1
|
727 |
+
filters=512
|
728 |
+
size=1
|
729 |
+
stride=1
|
730 |
+
pad=1
|
731 |
+
activation=mish
|
732 |
+
|
733 |
+
[route]
|
734 |
+
layers = -1,-16
|
735 |
+
|
736 |
+
[convolutional]
|
737 |
+
batch_normalize=1
|
738 |
+
filters=1024
|
739 |
+
size=1
|
740 |
+
stride=1
|
741 |
+
pad=1
|
742 |
+
activation=mish
|
743 |
+
|
744 |
+
##########################
|
745 |
+
|
746 |
+
[convolutional]
|
747 |
+
batch_normalize=1
|
748 |
+
filters=512
|
749 |
+
size=1
|
750 |
+
stride=1
|
751 |
+
pad=1
|
752 |
+
activation=leaky
|
753 |
+
|
754 |
+
[convolutional]
|
755 |
+
batch_normalize=1
|
756 |
+
size=3
|
757 |
+
stride=1
|
758 |
+
pad=1
|
759 |
+
filters=1024
|
760 |
+
activation=leaky
|
761 |
+
|
762 |
+
[convolutional]
|
763 |
+
batch_normalize=1
|
764 |
+
filters=512
|
765 |
+
size=1
|
766 |
+
stride=1
|
767 |
+
pad=1
|
768 |
+
activation=leaky
|
769 |
+
|
770 |
+
### SPP ###
|
771 |
+
[maxpool]
|
772 |
+
stride=1
|
773 |
+
size=5
|
774 |
+
|
775 |
+
[route]
|
776 |
+
layers=-2
|
777 |
+
|
778 |
+
[maxpool]
|
779 |
+
stride=1
|
780 |
+
size=9
|
781 |
+
|
782 |
+
[route]
|
783 |
+
layers=-4
|
784 |
+
|
785 |
+
[maxpool]
|
786 |
+
stride=1
|
787 |
+
size=13
|
788 |
+
|
789 |
+
[route]
|
790 |
+
layers=-1,-3,-5,-6
|
791 |
+
### End SPP ###
|
792 |
+
|
793 |
+
[convolutional]
|
794 |
+
batch_normalize=1
|
795 |
+
filters=512
|
796 |
+
size=1
|
797 |
+
stride=1
|
798 |
+
pad=1
|
799 |
+
activation=leaky
|
800 |
+
|
801 |
+
[convolutional]
|
802 |
+
batch_normalize=1
|
803 |
+
size=3
|
804 |
+
stride=1
|
805 |
+
pad=1
|
806 |
+
filters=1024
|
807 |
+
activation=leaky
|
808 |
+
|
809 |
+
[convolutional]
|
810 |
+
batch_normalize=1
|
811 |
+
filters=512
|
812 |
+
size=1
|
813 |
+
stride=1
|
814 |
+
pad=1
|
815 |
+
activation=leaky
|
816 |
+
|
817 |
+
[convolutional]
|
818 |
+
batch_normalize=1
|
819 |
+
filters=256
|
820 |
+
size=1
|
821 |
+
stride=1
|
822 |
+
pad=1
|
823 |
+
activation=leaky
|
824 |
+
|
825 |
+
[upsample]
|
826 |
+
stride=2
|
827 |
+
|
828 |
+
[route]
|
829 |
+
layers = 85
|
830 |
+
|
831 |
+
[convolutional]
|
832 |
+
batch_normalize=1
|
833 |
+
filters=256
|
834 |
+
size=1
|
835 |
+
stride=1
|
836 |
+
pad=1
|
837 |
+
activation=leaky
|
838 |
+
|
839 |
+
[route]
|
840 |
+
layers = -1, -3
|
841 |
+
|
842 |
+
[convolutional]
|
843 |
+
batch_normalize=1
|
844 |
+
filters=256
|
845 |
+
size=1
|
846 |
+
stride=1
|
847 |
+
pad=1
|
848 |
+
activation=leaky
|
849 |
+
|
850 |
+
[convolutional]
|
851 |
+
batch_normalize=1
|
852 |
+
size=3
|
853 |
+
stride=1
|
854 |
+
pad=1
|
855 |
+
filters=512
|
856 |
+
activation=leaky
|
857 |
+
|
858 |
+
[convolutional]
|
859 |
+
batch_normalize=1
|
860 |
+
filters=256
|
861 |
+
size=1
|
862 |
+
stride=1
|
863 |
+
pad=1
|
864 |
+
activation=leaky
|
865 |
+
|
866 |
+
[convolutional]
|
867 |
+
batch_normalize=1
|
868 |
+
size=3
|
869 |
+
stride=1
|
870 |
+
pad=1
|
871 |
+
filters=512
|
872 |
+
activation=leaky
|
873 |
+
|
874 |
+
[convolutional]
|
875 |
+
batch_normalize=1
|
876 |
+
filters=256
|
877 |
+
size=1
|
878 |
+
stride=1
|
879 |
+
pad=1
|
880 |
+
activation=leaky
|
881 |
+
|
882 |
+
[convolutional]
|
883 |
+
batch_normalize=1
|
884 |
+
filters=128
|
885 |
+
size=1
|
886 |
+
stride=1
|
887 |
+
pad=1
|
888 |
+
activation=leaky
|
889 |
+
|
890 |
+
[upsample]
|
891 |
+
stride=2
|
892 |
+
|
893 |
+
[route]
|
894 |
+
layers = 54
|
895 |
+
|
896 |
+
[convolutional]
|
897 |
+
batch_normalize=1
|
898 |
+
filters=128
|
899 |
+
size=1
|
900 |
+
stride=1
|
901 |
+
pad=1
|
902 |
+
activation=leaky
|
903 |
+
|
904 |
+
[route]
|
905 |
+
layers = -1, -3
|
906 |
+
|
907 |
+
[convolutional]
|
908 |
+
batch_normalize=1
|
909 |
+
filters=128
|
910 |
+
size=1
|
911 |
+
stride=1
|
912 |
+
pad=1
|
913 |
+
activation=leaky
|
914 |
+
|
915 |
+
[convolutional]
|
916 |
+
batch_normalize=1
|
917 |
+
size=3
|
918 |
+
stride=1
|
919 |
+
pad=1
|
920 |
+
filters=256
|
921 |
+
activation=leaky
|
922 |
+
|
923 |
+
[convolutional]
|
924 |
+
batch_normalize=1
|
925 |
+
filters=128
|
926 |
+
size=1
|
927 |
+
stride=1
|
928 |
+
pad=1
|
929 |
+
activation=leaky
|
930 |
+
|
931 |
+
[convolutional]
|
932 |
+
batch_normalize=1
|
933 |
+
size=3
|
934 |
+
stride=1
|
935 |
+
pad=1
|
936 |
+
filters=256
|
937 |
+
activation=leaky
|
938 |
+
|
939 |
+
[convolutional]
|
940 |
+
batch_normalize=1
|
941 |
+
filters=128
|
942 |
+
size=1
|
943 |
+
stride=1
|
944 |
+
pad=1
|
945 |
+
activation=leaky
|
946 |
+
|
947 |
+
##########################
|
948 |
+
|
949 |
+
[convolutional]
|
950 |
+
batch_normalize=1
|
951 |
+
size=3
|
952 |
+
stride=1
|
953 |
+
pad=1
|
954 |
+
filters=256
|
955 |
+
activation=leaky
|
956 |
+
|
957 |
+
[convolutional]
|
958 |
+
size=1
|
959 |
+
stride=1
|
960 |
+
pad=1
|
961 |
+
filters=255
|
962 |
+
activation=linear
|
963 |
+
|
964 |
+
|
965 |
+
[yolo]
|
966 |
+
mask = 0,1,2
|
967 |
+
anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
|
968 |
+
classes=80
|
969 |
+
num=9
|
970 |
+
jitter=.3
|
971 |
+
ignore_thresh = .7
|
972 |
+
truth_thresh = 1
|
973 |
+
scale_x_y = 1.2
|
974 |
+
iou_thresh=0.213
|
975 |
+
cls_normalizer=1.0
|
976 |
+
iou_normalizer=0.07
|
977 |
+
iou_loss=ciou
|
978 |
+
nms_kind=greedynms
|
979 |
+
beta_nms=0.6
|
980 |
+
max_delta=5
|
981 |
+
|
982 |
+
|
983 |
+
[route]
|
984 |
+
layers = -4
|
985 |
+
|
986 |
+
[convolutional]
|
987 |
+
batch_normalize=1
|
988 |
+
size=3
|
989 |
+
stride=2
|
990 |
+
pad=1
|
991 |
+
filters=256
|
992 |
+
activation=leaky
|
993 |
+
|
994 |
+
[route]
|
995 |
+
layers = -1, -16
|
996 |
+
|
997 |
+
[convolutional]
|
998 |
+
batch_normalize=1
|
999 |
+
filters=256
|
1000 |
+
size=1
|
1001 |
+
stride=1
|
1002 |
+
pad=1
|
1003 |
+
activation=leaky
|
1004 |
+
|
1005 |
+
[convolutional]
|
1006 |
+
batch_normalize=1
|
1007 |
+
size=3
|
1008 |
+
stride=1
|
1009 |
+
pad=1
|
1010 |
+
filters=512
|
1011 |
+
activation=leaky
|
1012 |
+
|
1013 |
+
[convolutional]
|
1014 |
+
batch_normalize=1
|
1015 |
+
filters=256
|
1016 |
+
size=1
|
1017 |
+
stride=1
|
1018 |
+
pad=1
|
1019 |
+
activation=leaky
|
1020 |
+
|
1021 |
+
[convolutional]
|
1022 |
+
batch_normalize=1
|
1023 |
+
size=3
|
1024 |
+
stride=1
|
1025 |
+
pad=1
|
1026 |
+
filters=512
|
1027 |
+
activation=leaky
|
1028 |
+
|
1029 |
+
[convolutional]
|
1030 |
+
batch_normalize=1
|
1031 |
+
filters=256
|
1032 |
+
size=1
|
1033 |
+
stride=1
|
1034 |
+
pad=1
|
1035 |
+
activation=leaky
|
1036 |
+
|
1037 |
+
[convolutional]
|
1038 |
+
batch_normalize=1
|
1039 |
+
size=3
|
1040 |
+
stride=1
|
1041 |
+
pad=1
|
1042 |
+
filters=512
|
1043 |
+
activation=leaky
|
1044 |
+
|
1045 |
+
[convolutional]
|
1046 |
+
size=1
|
1047 |
+
stride=1
|
1048 |
+
pad=1
|
1049 |
+
filters=255
|
1050 |
+
activation=linear
|
1051 |
+
|
1052 |
+
|
1053 |
+
[yolo]
|
1054 |
+
mask = 3,4,5
|
1055 |
+
anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
|
1056 |
+
classes=80
|
1057 |
+
num=9
|
1058 |
+
jitter=.3
|
1059 |
+
ignore_thresh = .7
|
1060 |
+
truth_thresh = 1
|
1061 |
+
scale_x_y = 1.1
|
1062 |
+
iou_thresh=0.213
|
1063 |
+
cls_normalizer=1.0
|
1064 |
+
iou_normalizer=0.07
|
1065 |
+
iou_loss=ciou
|
1066 |
+
nms_kind=greedynms
|
1067 |
+
beta_nms=0.6
|
1068 |
+
max_delta=5
|
1069 |
+
|
1070 |
+
|
1071 |
+
[route]
|
1072 |
+
layers = -4
|
1073 |
+
|
1074 |
+
[convolutional]
|
1075 |
+
batch_normalize=1
|
1076 |
+
size=3
|
1077 |
+
stride=2
|
1078 |
+
pad=1
|
1079 |
+
filters=512
|
1080 |
+
activation=leaky
|
1081 |
+
|
1082 |
+
[route]
|
1083 |
+
layers = -1, -37
|
1084 |
+
|
1085 |
+
[convolutional]
|
1086 |
+
batch_normalize=1
|
1087 |
+
filters=512
|
1088 |
+
size=1
|
1089 |
+
stride=1
|
1090 |
+
pad=1
|
1091 |
+
activation=leaky
|
1092 |
+
|
1093 |
+
[convolutional]
|
1094 |
+
batch_normalize=1
|
1095 |
+
size=3
|
1096 |
+
stride=1
|
1097 |
+
pad=1
|
1098 |
+
filters=1024
|
1099 |
+
activation=leaky
|
1100 |
+
|
1101 |
+
[convolutional]
|
1102 |
+
batch_normalize=1
|
1103 |
+
filters=512
|
1104 |
+
size=1
|
1105 |
+
stride=1
|
1106 |
+
pad=1
|
1107 |
+
activation=leaky
|
1108 |
+
|
1109 |
+
[convolutional]
|
1110 |
+
batch_normalize=1
|
1111 |
+
size=3
|
1112 |
+
stride=1
|
1113 |
+
pad=1
|
1114 |
+
filters=1024
|
1115 |
+
activation=leaky
|
1116 |
+
|
1117 |
+
[convolutional]
|
1118 |
+
batch_normalize=1
|
1119 |
+
filters=512
|
1120 |
+
size=1
|
1121 |
+
stride=1
|
1122 |
+
pad=1
|
1123 |
+
activation=leaky
|
1124 |
+
|
1125 |
+
[convolutional]
|
1126 |
+
batch_normalize=1
|
1127 |
+
size=3
|
1128 |
+
stride=1
|
1129 |
+
pad=1
|
1130 |
+
filters=1024
|
1131 |
+
activation=leaky
|
1132 |
+
|
1133 |
+
[convolutional]
|
1134 |
+
size=1
|
1135 |
+
stride=1
|
1136 |
+
pad=1
|
1137 |
+
filters=255
|
1138 |
+
activation=linear
|
1139 |
+
|
1140 |
+
|
1141 |
+
[yolo]
|
1142 |
+
mask = 6,7,8
|
1143 |
+
anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
|
1144 |
+
classes=80
|
1145 |
+
num=9
|
1146 |
+
jitter=.3
|
1147 |
+
ignore_thresh = .7
|
1148 |
+
truth_thresh = 1
|
1149 |
+
random=1
|
1150 |
+
scale_x_y = 1.05
|
1151 |
+
iou_thresh=0.213
|
1152 |
+
cls_normalizer=1.0
|
1153 |
+
iou_normalizer=0.07
|
1154 |
+
iou_loss=ciou
|
1155 |
+
nms_kind=greedynms
|
1156 |
+
beta_nms=0.6
|
1157 |
+
max_delta=5
|
__pycache__/anti_spoofing.cpython-311.pyc
ADDED
Binary file (13.2 kB). View file
|
|
anti_spoofing.py
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import all the libraries
|
2 |
+
import cv2
|
3 |
+
import dlib
|
4 |
+
import numpy as np
|
5 |
+
import os
|
6 |
+
import time
|
7 |
+
import mediapipe as mp
|
8 |
+
from skimage import feature
|
9 |
+
|
10 |
+
# I'm setting up the face and hand detectors here.
|
11 |
+
class AntiSpoofingSystem:
|
12 |
+
def __init__(self):
|
13 |
+
self.detector = dlib.get_frontal_face_detector()
|
14 |
+
self.predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
|
15 |
+
|
16 |
+
# Here I initialize MediaPipe for hand gesture detection.
|
17 |
+
self.mp_hands = mp.solutions.hands
|
18 |
+
self.hands = self.mp_hands.Hands(static_image_mode=False, max_num_hands=1, min_detection_confidence=0.7)
|
19 |
+
|
20 |
+
|
21 |
+
# This code is for Webcam if you have Jetson kit change value from 0 to 1.
|
22 |
+
self.cap = cv2.VideoCapture(0)
|
23 |
+
self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1280)
|
24 |
+
self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 720)
|
25 |
+
|
26 |
+
# I create a directory to save the captured images if it doesn't exist.
|
27 |
+
self.save_directory = "Person"
|
28 |
+
if not os.path.exists(self.save_directory):
|
29 |
+
os.makedirs(self.save_directory)
|
30 |
+
|
31 |
+
|
32 |
+
# Iam loading the Pre-trained model to detect smartphones.
|
33 |
+
self.net_smartphone = cv2.dnn.readNet('yolov4.weights', 'PreTrained_yolov4.cfg')
|
34 |
+
with open('PreTrained_coco.names', 'r') as f:
|
35 |
+
self.classes_smartphone = f.read().strip().split('\n')
|
36 |
+
|
37 |
+
|
38 |
+
# Setting some thresholds for eye aspect ratio to detect blinks.
|
39 |
+
self.EAR_THRESHOLD = 0.2
|
40 |
+
self.BLINK_CONSEC_FRAMES = 4
|
41 |
+
|
42 |
+
# Initializing some variables to keep track of eye states and blink counts.
|
43 |
+
self.left_eye_state = False
|
44 |
+
self.right_eye_state = False
|
45 |
+
self.left_blink_counter = 0
|
46 |
+
self.right_blink_counter = 0
|
47 |
+
|
48 |
+
# Variables to manage smartphone detection.
|
49 |
+
self.smartphone_detected = False
|
50 |
+
self.smartphone_detection_frame_interval = 10
|
51 |
+
self.frame_count = 0
|
52 |
+
|
53 |
+
# New attributes for student data
|
54 |
+
self.student_id = None
|
55 |
+
self.student_name = None
|
56 |
+
|
57 |
+
|
58 |
+
# It is calculating the eye aspect ratio to detect blinks.
|
59 |
+
def calculate_ear(self, eye):
|
60 |
+
A = np.linalg.norm(eye[1] - eye[5])
|
61 |
+
B = np.linalg.norm(eye[2] - eye[4])
|
62 |
+
C = np.linalg.norm(eye[0] - eye[3])
|
63 |
+
return (A + B) / (2.0 * C)
|
64 |
+
|
65 |
+
|
66 |
+
# Analyzing the texture of the face to check for liveness.
|
67 |
+
def analyze_texture(self, face_region):
|
68 |
+
gray_face = cv2.cvtColor(face_region, cv2.COLOR_BGR2GRAY)
|
69 |
+
lbp = feature.local_binary_pattern(gray_face, P=8, R=1, method="uniform")
|
70 |
+
lbp_hist, _ = np.histogram(lbp.ravel(), bins=np.arange(0, 58), range=(0, 58))
|
71 |
+
lbp_hist = lbp_hist.astype("float")
|
72 |
+
lbp_hist /= (lbp_hist.sum() + 1e-5)
|
73 |
+
return np.sum(lbp_hist[:10]) > 0.3
|
74 |
+
|
75 |
+
# Detecting hand using MediaPipe.
|
76 |
+
def detect_hand_gesture(self, frame):
|
77 |
+
results = self.hands.process(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
78 |
+
return results.multi_hand_landmarks is not None
|
79 |
+
|
80 |
+
# Detecting smartphones in the frame to prevent System Bypass.
|
81 |
+
def detect_smartphone(self, frame):
|
82 |
+
if self.frame_count % self.smartphone_detection_frame_interval == 0:
|
83 |
+
blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (224, 224), swapRB=True, crop=False)
|
84 |
+
self.net_smartphone.setInput(blob)
|
85 |
+
output_layers_names = self.net_smartphone.getUnconnectedOutLayersNames()
|
86 |
+
detections = self.net_smartphone.forward(output_layers_names)
|
87 |
+
|
88 |
+
for detection in detections:
|
89 |
+
for obj in detection:
|
90 |
+
scores = obj[5:]
|
91 |
+
class_id = np.argmax(scores)
|
92 |
+
confidence = scores[class_id]
|
93 |
+
if confidence > 0.3 and self.classes_smartphone[class_id] == 'cell phone':
|
94 |
+
center_x = int(obj[0] * frame.shape[1])
|
95 |
+
center_y = int(obj[1] * frame.shape[0])
|
96 |
+
width = int(obj[2] * frame.shape[1])
|
97 |
+
height = int(obj[3] * frame.shape[0])
|
98 |
+
left = int(center_x - width / 2)
|
99 |
+
top = int(center_y - height / 2)
|
100 |
+
|
101 |
+
cv2.rectangle(frame, (left, top), (left + width, top + height), (0, 0, 255), 2)
|
102 |
+
cv2.putText(frame, 'Smartphone Detected', (left, top - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
|
103 |
+
|
104 |
+
self.smartphone_detected = True
|
105 |
+
self.left_blink_counter = 0
|
106 |
+
self.right_blink_counter = 0
|
107 |
+
return
|
108 |
+
|
109 |
+
self.frame_count += 1
|
110 |
+
self.smartphone_detected = False
|
111 |
+
|
112 |
+
# Checking if the user blinked to confirm their presence.
|
113 |
+
def detect_blink(self, left_ear, right_ear):
|
114 |
+
if self.smartphone_detected:
|
115 |
+
self.left_eye_state = False
|
116 |
+
self.right_eye_state = False
|
117 |
+
self.left_blink_counter = 0
|
118 |
+
self.right_blink_counter = 0
|
119 |
+
return False
|
120 |
+
|
121 |
+
# Incrementing blink counter if a blink is detected.
|
122 |
+
if left_ear < self.EAR_THRESHOLD:
|
123 |
+
if not self.left_eye_state:
|
124 |
+
self.left_eye_state = True
|
125 |
+
else:
|
126 |
+
if self.left_eye_state:
|
127 |
+
self.left_eye_state = False
|
128 |
+
self.left_blink_counter += 1
|
129 |
+
|
130 |
+
if right_ear < self.EAR_THRESHOLD:
|
131 |
+
if not self.right_eye_state:
|
132 |
+
self.right_eye_state = True
|
133 |
+
else:
|
134 |
+
if self.right_eye_state:
|
135 |
+
self.right_eye_state = False
|
136 |
+
self.right_blink_counter += 1
|
137 |
+
|
138 |
+
|
139 |
+
# Resetting blink counters after a successful blink detection.
|
140 |
+
if self.left_blink_counter > 0 and self.right_blink_counter > 0:
|
141 |
+
self.left_blink_counter = 0
|
142 |
+
self.right_blink_counter = 0
|
143 |
+
return True
|
144 |
+
else:
|
145 |
+
return False
|
146 |
+
|
147 |
+
# Main loop to process the video feed.
|
148 |
+
def run(self, update_frame_callback=None):
|
149 |
+
blink_count = 0
|
150 |
+
hand_gesture_detected = False
|
151 |
+
image_captured = False
|
152 |
+
last_event_time = time.time()
|
153 |
+
event_timeout = 60
|
154 |
+
message_displayed = False
|
155 |
+
|
156 |
+
while True:
|
157 |
+
ret, frame = self.cap.read()
|
158 |
+
if not ret:
|
159 |
+
break
|
160 |
+
|
161 |
+
# Detecting smartphones in the frame.
|
162 |
+
self.detect_smartphone(frame)
|
163 |
+
|
164 |
+
# Displaying a warning if a smartphone is detected.
|
165 |
+
if self.smartphone_detected:
|
166 |
+
cv2.putText(frame, "Mobile phone detected, can't record attendance", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
|
167 |
+
blink_count = 0
|
168 |
+
|
169 |
+
# Processing each frame to detect faces, blinks, and hand gestures.
|
170 |
+
if not self.smartphone_detected:
|
171 |
+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
172 |
+
faces = self.detector(gray)
|
173 |
+
|
174 |
+
for face in faces:
|
175 |
+
landmarks = self.predictor(gray, face)
|
176 |
+
leftEye = np.array([(landmarks.part(n).x, landmarks.part(n).y) for n in range(36, 42)])
|
177 |
+
rightEye = np.array([(landmarks.part(n).x, landmarks.part(n).y) for n in range(42, 48)])
|
178 |
+
|
179 |
+
ear_left = self.calculate_ear(leftEye)
|
180 |
+
ear_right = self.calculate_ear(rightEye)
|
181 |
+
|
182 |
+
if self.detect_blink(ear_left, ear_right):
|
183 |
+
blink_count += 1
|
184 |
+
|
185 |
+
# Prionting and Incrementing blink Count
|
186 |
+
cv2.putText(frame, f"Blink Count: {blink_count}", (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
|
187 |
+
|
188 |
+
hand_gesture_detected = self.detect_hand_gesture(frame)
|
189 |
+
|
190 |
+
# Indicating when a hand gesture is detected.
|
191 |
+
if hand_gesture_detected:
|
192 |
+
cv2.putText(frame, "Hand Gesture Detected", (10, 100), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
|
193 |
+
|
194 |
+
(x, y, w, h) = (face.left(), face.top(), face.width(), face.height())
|
195 |
+
expanded_region = frame[max(y - h // 2, 0):min(y + 3 * h // 2, frame.shape[0]),
|
196 |
+
max(x - w // 2, 0):min(x + 3 * w // 2, frame.shape[1])]
|
197 |
+
|
198 |
+
# Checking if the conditions are met to capture the image.
|
199 |
+
if blink_count >= 5 and hand_gesture_detected and self.analyze_texture(expanded_region) and not message_displayed:
|
200 |
+
cv2.putText(frame, "Please hold still for 2 seconds...", (10, 150), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
|
201 |
+
cv2.imshow("Frame", frame)
|
202 |
+
cv2.waitKey(1)
|
203 |
+
time.sleep(2)
|
204 |
+
message_displayed = True
|
205 |
+
|
206 |
+
if message_displayed and not image_captured:
|
207 |
+
timestamp = int(time.time())
|
208 |
+
picture_name = f"{self.student_id}_{timestamp}.jpg"
|
209 |
+
cv2.imwrite(os.path.join(self.save_directory, picture_name), expanded_region)
|
210 |
+
image_captured = True
|
211 |
+
|
212 |
+
if update_frame_callback:
|
213 |
+
update_frame_callback(frame)
|
214 |
+
|
215 |
+
cv2.imshow("Frame", frame)
|
216 |
+
if image_captured or (time.time() - last_event_time > event_timeout and not hand_gesture_detected):
|
217 |
+
break
|
218 |
+
if cv2.waitKey(1) & 0xFF == ord('q'):
|
219 |
+
break
|
220 |
+
|
221 |
+
self.cap.release()
|
222 |
+
cv2.destroyAllWindows()
|
223 |
+
|
224 |
+
#If person if real and did all the required features then his attendance will be marked if not then it will print no person detected.
|
225 |
+
if image_captured:
|
226 |
+
print(f"Person detected. Face image captured and saved as {picture_name}.")
|
227 |
+
elif not hand_gesture_detected:
|
228 |
+
print("No real person detected")
|
229 |
+
|
230 |
+
if __name__ == "__main__":
|
231 |
+
anti_spoofing_system = AntiSpoofingSystem()
|
232 |
+
anti_spoofing_system.run()
|
app.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import tkinter as tk
|
3 |
+
from tkinter import messagebox
|
4 |
+
from PIL import Image, ImageTk
|
5 |
+
import threading
|
6 |
+
import cv2
|
7 |
+
from anti_spoofing import AntiSpoofingSystem
|
8 |
+
|
9 |
+
class AntiSpoofingGUI:
|
10 |
+
def __init__(self, anti_spoofing_system):
|
11 |
+
self.anti_spoofing_system = anti_spoofing_system
|
12 |
+
self.window = tk.Tk()
|
13 |
+
self.window.title("Anti-Spoofing System")
|
14 |
+
|
15 |
+
self.student_id_label = tk.Label(self.window, text="Student ID:")
|
16 |
+
self.student_id_label.pack()
|
17 |
+
self.student_id_entry = tk.Entry(self.window)
|
18 |
+
self.student_id_entry.pack()
|
19 |
+
|
20 |
+
self.student_name_label = tk.Label(self.window, text="Student Name:")
|
21 |
+
self.student_name_label.pack()
|
22 |
+
self.student_name_entry = tk.Entry(self.window)
|
23 |
+
self.student_name_entry.pack()
|
24 |
+
|
25 |
+
self.start_button = tk.Button(self.window, text="Start", command=self.start_anti_spoofing)
|
26 |
+
self.start_button.pack()
|
27 |
+
|
28 |
+
self.image_label = tk.Label(self.window)
|
29 |
+
self.image_label.pack()
|
30 |
+
|
31 |
+
# Create a PhotoImage object to use for the video feed
|
32 |
+
self.photo = ImageTk.PhotoImage("RGB", (640, 480))
|
33 |
+
|
34 |
+
def start_anti_spoofing(self):
|
35 |
+
self.student_id = self.student_id_entry.get()
|
36 |
+
self.student_name = self.student_name_entry.get()
|
37 |
+
|
38 |
+
if not self.student_id or not self.student_name:
|
39 |
+
messagebox.showwarning("Warning", "Please enter both Student ID and Name")
|
40 |
+
return
|
41 |
+
|
42 |
+
threading.Thread(target=self.run_anti_spoofing, daemon=True).start()
|
43 |
+
|
44 |
+
def run_anti_spoofing(self):
|
45 |
+
self.anti_spoofing_system.student_id = self.student_id
|
46 |
+
self.anti_spoofing_system.student_name = self.student_name
|
47 |
+
self.anti_spoofing_system.run(self.update_frame)
|
48 |
+
|
49 |
+
def update_frame(self, frame):
|
50 |
+
cv2image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGBA)
|
51 |
+
self.photo.paste(Image.fromarray(cv2image))
|
52 |
+
self.image_label.config(image=self.photo)
|
53 |
+
self.image_label.update_idletasks()
|
54 |
+
|
55 |
+
def run(self):
|
56 |
+
self.window.mainloop()
|
57 |
+
|
58 |
+
if __name__ == "__main__":
|
59 |
+
anti_spoofing_system = AntiSpoofingSystem()
|
60 |
+
gui = AntiSpoofingGUI(anti_spoofing_system)
|
61 |
+
gui.run()
|
shape_predictor_68_face_landmarks.dat
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fbdc2cb80eb9aa7a758672cbfdda32ba6300efe9b6e6c7a299ff7e736b11b92f
|
3 |
+
size 99693937
|
yolov4.weights
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e8a4f6c62188738d86dc6898d82724ec0964d0eb9d2ae0f0a9d53d65d108d562
|
3 |
+
size 257717640
|