Spaces:
Sleeping
Sleeping
# model_2.py | |
import os | |
import cv2 | |
import numpy as np | |
import importlib.util | |
from PIL import Image | |
import gradio as gr | |
from common_detection import perform_detection | |
MODEL_DIR = 'model_2' | |
GRAPH_NAME = 'detect.tflite' | |
LABELMAP_NAME = 'labelmap.txt' | |
pkg = importlib.util.find_spec('tflite_runtime') | |
if pkg: | |
from tflite_runtime.interpreter import Interpreter | |
else: | |
from tensorflow.lite.python.interpreter import Interpreter | |
PATH_TO_CKPT = os.path.join(MODEL_DIR, GRAPH_NAME) | |
PATH_TO_LABELS = os.path.join(MODEL_DIR, LABELMAP_NAME) | |
with open(PATH_TO_LABELS, 'r') as f: | |
labels = [line.strip() for line in f.readlines()] | |
if labels[0] == '???': | |
del(labels[0]) | |
interpreter = Interpreter(model_path=PATH_TO_CKPT) | |
interpreter.allocate_tensors() | |
input_details = interpreter.get_input_details() | |
output_details = interpreter.get_output_details() | |
height = input_details[0]['shape'][1] | |
width = input_details[0]['shape'][2] | |
floating_model = (input_details[0]['dtype'] == np.float32) | |
def detect_image(input_image): | |
image = np.array(input_image) | |
resized_image = cv2.resize(image, (640, 640)) | |
result_image = perform_detection(resized_image, interpreter, labels, input_details, output_details, height, width, floating_model) | |
return Image.fromarray(result_image) | |
def detect_video(input_video): | |
cap = cv2.VideoCapture(input_video) | |
frames = [] | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if not ret: | |
break | |
resized_frame = cv2.resize(frame, (640, 640)) | |
result_frame = perform_detection(resized_frame, interpreter, labels, input_details, output_details, height, width, floating_model) | |
frames.append(result_frame) | |
cap.release() | |
if not frames: | |
raise ValueError("No frames were read from the video.") | |
height, width, layers = frames[0].shape | |
size = (width, height) | |
output_video_path = "result_" + os.path.basename(input_video) | |
out = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*'mp4v'), 15, size) | |
for frame in frames: | |
out.write(frame) | |
out.release() | |
return output_video_path | |