Spaces:
Sleeping
Sleeping
import os | |
import cv2 | |
import numpy as np | |
import importlib.util | |
from PIL import Image | |
import gradio as gr | |
from common_detection import perform_detection, resize_image | |
# Function to load the TensorFlow Lite model and labels | |
def load_model_and_labels(model_dir): | |
pkg = importlib.util.find_spec('tflite_runtime') | |
if pkg: | |
from tflite_runtime.interpreter import Interpreter | |
else: | |
from tensorflow.lite.python.interpreter import Interpreter | |
PATH_TO_CKPT = os.path.join(model_dir, 'detect.tflite') | |
PATH_TO_LABELS = os.path.join(model_dir, 'labelmap.txt') | |
with open(PATH_TO_LABELS, 'r') as f: | |
labels = [line.strip() for line in f.readlines()] | |
if labels[0] == '???': | |
del(labels[0]) | |
interpreter = Interpreter(model_path=PATH_TO_CKPT) | |
interpreter.allocate_tensors() | |
input_details = interpreter.get_input_details() | |
output_details = interpreter.get_output_details() | |
height = input_details[0]['shape'][1] | |
width = input_details[0]['shape'][2] | |
floating_model = (input_details[0]['dtype'] == np.float32) | |
return interpreter, labels, input_details, output_details, height, width, floating_model | |
# Load models | |
models = { | |
"Multi-class model": "model", | |
"Empty class": "model_2", | |
"Misalignment class": "model_3" | |
} | |
# Function to perform image detection | |
def detect_image(model_choice, input_image): | |
model_dir = models[model_choice] | |
interpreter, labels, input_details, output_details, height, width, floating_model = load_model_and_labels(model_dir) | |
image = np.array(input_image) | |
resized_image = resize_image(image, size=640) | |
result_image = perform_detection(resized_image, interpreter, labels, input_details, output_details, height, width, floating_model) | |
return Image.fromarray(result_image) | |
# Function to perform video detection | |
def detect_video(model_choice, input_video): | |
model_dir = models[model_choice] | |
interpreter, labels, input_details, output_details, height, width, floating_model = load_model_and_labels(model_dir) | |
cap = cv2.VideoCapture(input_video) | |
frames = [] | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if not ret: | |
break | |
resized_frame = resize_image(frame, size=640) | |
result_frame = perform_detection(resized_frame, interpreter, labels, input_details, output_details, height, width, floating_model) | |
frames.append(result_frame) | |
cap.release() | |
if not frames: | |
raise ValueError("No frames were read from the video.") | |
height, width, layers = frames[0].shape | |
size = (width, height) | |
output_video_path = "result_" + os.path.basename(input_video) | |
out = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*'mp4v'), 15, size) | |
for frame in frames: | |
out.write(frame) | |
out.release() | |
return output_video_path | |
app = gr.Blocks() | |
with app: | |
gr.Markdown("## Object Detection using TensorFlow Lite Models") | |
with gr.Row(): | |
model_choice = gr.Dropdown(label="Select Model", choices=["Multi-class model", "Empty class", "Misalignment class"]) | |
with gr.Tab("Image Detection"): | |
image_input = gr.Image(type="pil", label="Upload an image") | |
image_output = gr.Image(type="pil", label="Detection Result") | |
gr.Button("Submit Image").click(fn=detect_image, inputs=[model_choice, image_input], outputs=image_output) | |
with gr.Tab("Video Detection"): | |
video_input = gr.Video(label="Upload a video") | |
video_output = gr.Video(label="Detection Result") | |
gr.Button("Submit Video").click(fn=detect_video, inputs=[model_choice, video_input], outputs=video_output) | |
app.launch(share=True) | |