brxerq's picture
Update app.py
bb4d038 verified
raw
history blame
3.71 kB
import os
import cv2
import numpy as np
import importlib.util
from PIL import Image
import gradio as gr
from common_detection import perform_detection, resize_image
# Function to load the TensorFlow Lite model and labels
def load_model_and_labels(model_dir):
pkg = importlib.util.find_spec('tflite_runtime')
if pkg:
from tflite_runtime.interpreter import Interpreter
else:
from tensorflow.lite.python.interpreter import Interpreter
PATH_TO_CKPT = os.path.join(model_dir, 'detect.tflite')
PATH_TO_LABELS = os.path.join(model_dir, 'labelmap.txt')
with open(PATH_TO_LABELS, 'r') as f:
labels = [line.strip() for line in f.readlines()]
if labels[0] == '???':
del(labels[0])
interpreter = Interpreter(model_path=PATH_TO_CKPT)
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
height = input_details[0]['shape'][1]
width = input_details[0]['shape'][2]
floating_model = (input_details[0]['dtype'] == np.float32)
return interpreter, labels, input_details, output_details, height, width, floating_model
# Load models
models = {
"Multi-class model": "model",
"Empty class": "model_2",
"Misalignment class": "model_3"
}
# Function to perform image detection
def detect_image(model_choice, input_image):
model_dir = models[model_choice]
interpreter, labels, input_details, output_details, height, width, floating_model = load_model_and_labels(model_dir)
image = np.array(input_image)
resized_image = resize_image(image, size=640)
result_image = perform_detection(resized_image, interpreter, labels, input_details, output_details, height, width, floating_model)
return Image.fromarray(result_image)
# Function to perform video detection
def detect_video(model_choice, input_video):
model_dir = models[model_choice]
interpreter, labels, input_details, output_details, height, width, floating_model = load_model_and_labels(model_dir)
cap = cv2.VideoCapture(input_video)
frames = []
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
resized_frame = resize_image(frame, size=640)
result_frame = perform_detection(resized_frame, interpreter, labels, input_details, output_details, height, width, floating_model)
frames.append(result_frame)
cap.release()
if not frames:
raise ValueError("No frames were read from the video.")
height, width, layers = frames[0].shape
size = (width, height)
output_video_path = "result_" + os.path.basename(input_video)
out = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*'mp4v'), 15, size)
for frame in frames:
out.write(frame)
out.release()
return output_video_path
app = gr.Blocks()
with app:
gr.Markdown("## Object Detection using TensorFlow Lite Models")
with gr.Row():
model_choice = gr.Dropdown(label="Select Model", choices=["Multi-class model", "Empty class", "Misalignment class"])
with gr.Tab("Image Detection"):
image_input = gr.Image(type="pil", label="Upload an image")
image_output = gr.Image(type="pil", label="Detection Result")
gr.Button("Submit Image").click(fn=detect_image, inputs=[model_choice, image_input], outputs=image_output)
with gr.Tab("Video Detection"):
video_input = gr.Video(label="Upload a video")
video_output = gr.Video(label="Detection Result")
gr.Button("Submit Video").click(fn=detect_video, inputs=[model_choice, video_input], outputs=video_output)
app.launch(share=True)