Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,45 +1,43 @@
|
|
1 |
-
#
|
|
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
import tensorflow as tf
|
|
|
5 |
import cv2
|
6 |
-
import tensorflow_hub as hub
|
7 |
|
8 |
-
# Load
|
|
|
|
|
|
|
9 |
train_info = []
|
10 |
with open('labelwithspace.txt', 'r') as file:
|
11 |
-
train_info = [line.strip() for line in file.
|
12 |
-
|
13 |
-
# Load your actual model from the .h5 file
|
14 |
-
def load_real_model():
|
15 |
-
try:
|
16 |
-
# Register KerasLayer from TensorFlow Hub if used
|
17 |
-
custom_objects = {'KerasLayer': hub.KerasLayer}
|
18 |
-
model = tf.keras.models.load_model('bird_model4.h5', custom_objects=custom_objects)
|
19 |
-
except Exception as e:
|
20 |
-
print("Error loading the model:", e)
|
21 |
-
exit()
|
22 |
-
return model
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
-
|
27 |
-
# Function to preprocess the image and make predictions
|
28 |
-
def predict_image(image):
|
29 |
-
# Resize and normalize the image
|
30 |
img = cv2.resize(image, (224, 224))
|
31 |
-
img = img / 255.0 # Normalize
|
|
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
return label
|
39 |
|
40 |
# Define the Gradio interface
|
41 |
-
input_image = gr.Image()
|
42 |
-
output_label = gr.Label()
|
43 |
|
44 |
-
# Launch the Gradio
|
45 |
-
gr.Interface(fn=predict_image, inputs=input_image, outputs=output_label).launch()
|
|
|
1 |
+
# app.py
|
2 |
+
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
5 |
import tensorflow as tf
|
6 |
+
from tensorflow.keras.models import load_model
|
7 |
import cv2
|
|
|
8 |
|
9 |
+
# Load the pre-trained model
|
10 |
+
model = load_model('bird_model.h5')
|
11 |
+
|
12 |
+
# Load class labels from your text file
|
13 |
train_info = []
|
14 |
with open('labelwithspace.txt', 'r') as file:
|
15 |
+
train_info = [line.strip() for line in file.read().splitlines()]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
# Function to preprocess the input image
|
18 |
+
def preprocess_image(image):
|
19 |
+
# Resize the image to the input size expected by the model
|
|
|
|
|
|
|
20 |
img = cv2.resize(image, (224, 224))
|
21 |
+
img = img / 255.0 # Normalize the image
|
22 |
+
return img
|
23 |
|
24 |
+
# Prediction function
|
25 |
+
def predict_image(image):
|
26 |
+
# Preprocess the image
|
27 |
+
img = preprocess_image(image)
|
28 |
+
# Expand dimensions to match the model's input shape
|
29 |
+
img = np.expand_dims(img, axis=0)
|
30 |
+
# Get model predictions
|
31 |
+
predictions = model.predict(img)[0]
|
32 |
+
# Find the top prediction
|
33 |
+
top_class = np.argmax(predictions)
|
34 |
+
# Get the label for the top prediction
|
35 |
+
label = train_info[top_class]
|
36 |
return label
|
37 |
|
38 |
# Define the Gradio interface
|
39 |
+
input_image = gr.Image(shape=(224, 224), label="Input Image")
|
40 |
+
output_label = gr.Label(label="Predicted Bird Species")
|
41 |
|
42 |
+
# Launch the Gradio app
|
43 |
+
gr.Interface(fn=predict_image, inputs=input_image, outputs=output_label, capture_session=True).launch()
|