Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
import gradio as gr | |
import numpy as np | |
import tensorflow as tf | |
import tensorflow_hub as hub | |
import cv2 | |
# Define a dictionary to map the custom layer to its implementation | |
custom_objects = {'KerasLayer': hub.KerasLayer} | |
# Load your model (ensure the path to the model file is correct) | |
model = tf.keras.models.load_model('bird_model4.h5', custom_objects=custom_objects) | |
# Load the class labels from the text file | |
train_info = [] | |
with open('labelwithspace.txt', 'r') as file: | |
train_info = [line.strip() for line in file.readlines()] | |
# Function to preprocess the image and make predictions | |
def predict_image(image): | |
# Resize the image to the model's input size | |
img = cv2.resize(image, (224, 224)) | |
img = img / 255.0 # Normalize the image | |
# Make predictions using the model | |
predictions = model.predict(img[np.newaxis, ...])[0] | |
top_classes = np.argsort(predictions)[-3:][::-1] # Get indices of top 3 predictions | |
top_class = top_classes[0] # Index of the top prediction | |
label = train_info[top_class] # Retrieve the label using the index | |
return label | |
# Define the Gradio interface | |
input_image = gr.inputs.Image(shape=(224, 224)) | |
output_label = gr.outputs.Label() | |
# Launch the Gradio app | |
gr.Interface(fn=predict_image, inputs=input_image, outputs=output_label, capture_session=True).launch() | |