Spaces:
Running
on
Zero
Running
on
Zero
prod = False | |
port = 8080 | |
show_options = False | |
if prod: | |
port = 8081 | |
# show_options = False | |
import os | |
import random | |
import time | |
import gradio as gr | |
import numpy as np | |
import spaces | |
import imageio | |
from huggingface_hub import HfApi | |
import gc | |
import torch | |
import cv2 | |
from PIL import Image | |
from diffusers import ( | |
ControlNetModel, | |
DPMSolverMultistepScheduler, | |
StableDiffusionControlNetPipeline, | |
# StableDiffusionInpaintPipeline, | |
# AutoencoderKL, | |
) | |
from controlnet_aux_local import NormalBaeDetector | |
MAX_SEED = np.iinfo(np.int32).max | |
API_KEY = os.environ.get("API_KEY", None) | |
# os.environ['HF_HOME'] = '/data/.huggingface' | |
print("CUDA version:", torch.version.cuda) | |
print("loading everything") | |
compiled = False | |
api = HfApi() | |
class Preprocessor: | |
MODEL_ID = "lllyasviel/Annotators" | |
def __init__(self): | |
self.model = None | |
self.name = "" | |
def load(self, name: str) -> None: | |
if name == self.name: | |
return | |
elif name == "NormalBae": | |
print("Loading NormalBae") | |
self.model = NormalBaeDetector.from_pretrained(self.MODEL_ID).to("cuda") | |
torch.cuda.empty_cache() | |
self.name = name | |
else: | |
raise ValueError | |
return | |
def __call__(self, image: Image.Image, **kwargs) -> Image.Image: | |
return self.model(image, **kwargs) | |
if gr.NO_RELOAD: | |
# Controlnet Normal | |
model_id = "lllyasviel/control_v11p_sd15_normalbae" | |
print("initializing controlnet") | |
controlnet = ControlNetModel.from_pretrained( | |
model_id, | |
torch_dtype=torch.float16, | |
attn_implementation="flash_attention_2", | |
).to("cuda") | |
# Scheduler | |
scheduler = DPMSolverMultistepScheduler.from_pretrained( | |
# "runwayml/stable-diffusion-v1-5", | |
# "stable-diffusion-v1-5/stable-diffusion-v1-5", | |
"ashllay/stable-diffusion-v1-5-archive", | |
solver_order=2, | |
subfolder="scheduler", | |
use_karras_sigmas=True, | |
final_sigmas_type="sigma_min", | |
algorithm_type="sde-dpmsolver++", | |
prediction_type="epsilon", | |
thresholding=False, | |
denoise_final=True, | |
device_map="cuda", | |
torch_dtype=torch.float16, | |
) | |
# Stable Diffusion Pipeline URL | |
# base_model_url = "https://huggingface.co/broyang/hentaidigitalart_v20/blob/main/realcartoon3d_v15.safetensors" | |
base_model_url = "https://huggingface.co/Lykon/AbsoluteReality/blob/main/AbsoluteReality_1.8.1_pruned.safetensors" | |
# vae_url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors" | |
# print('loading vae') | |
# vae = AutoencoderKL.from_single_file(vae_url, torch_dtype=torch.float16).to("cuda") | |
# vae.to(memory_format=torch.channels_last) | |
print('loading pipe') | |
pipe = StableDiffusionControlNetPipeline.from_single_file( | |
base_model_url, | |
safety_checker=None, | |
controlnet=controlnet, | |
scheduler=scheduler, | |
# vae=vae, | |
torch_dtype=torch.float16, | |
).to("cuda") | |
# print('loading inpainting pipe') | |
# inpaint_pipe = StableDiffusionInpaintPipeline.from_pretrained( | |
# "runwayml/stable-diffusion-inpainting", | |
# torch_dtype=torch.float16, | |
# ).to("cuda") | |
print("loading preprocessor") | |
preprocessor = Preprocessor() | |
preprocessor.load("NormalBae") | |
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="EasyNegativeV2.safetensors", token="EasyNegativeV2",) | |
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="badhandv4.pt", token="badhandv4") | |
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="fcNeg-neg.pt", token="fcNeg-neg") | |
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Ahegao.pt", token="HDA_Ahegao") | |
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Bondage.pt", token="HDA_Bondage") | |
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_pet_play.pt", token="HDA_pet_play") | |
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_unconventional maid.pt", token="HDA_unconventional_maid") | |
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_NakedHoodie.pt", token="HDA_NakedHoodie") | |
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_NunDress.pt", token="HDA_NunDress") | |
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Shibari.pt", token="HDA_Shibari") | |
pipe.to("cuda") | |
print("---------------Loaded controlnet pipeline---------------") | |
torch.cuda.empty_cache() | |
gc.collect() | |
print(f"CUDA memory allocated: {torch.cuda.max_memory_allocated(device='cuda') / 1e9:.2f} GB") | |
print("Model Compiled!") | |
def generate_furniture_mask(image, furniture_type): | |
image_np = np.array(image) | |
height, width = image_np.shape[:2] | |
mask = np.zeros((height, width), dtype=np.uint8) | |
if furniture_type == "sofa": | |
cv2.rectangle(mask, (width//4, int(height*0.6)), (width*3//4, height), 255, -1) | |
elif furniture_type == "table": | |
cv2.rectangle(mask, (width//3, height//3), (width*2//3, height*2//3), 255, -1) | |
elif furniture_type == "chair": | |
cv2.circle(mask, (width*3//5, height*2//3), height//6, 255, -1) | |
return Image.fromarray(mask) | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def get_additional_prompt(): | |
prompt = "hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed" | |
top = ["tank top", "blouse", "button up shirt", "sweater", "corset top"] | |
bottom = ["short skirt", "athletic shorts", "jean shorts", "pleated skirt", "short skirt", "leggings", "high-waisted shorts"] | |
accessory = ["knee-high boots", "gloves", "Thigh-high stockings", "Garter belt", "choker", "necklace", "headband", "headphones"] | |
return f"{prompt}, {random.choice(top)}, {random.choice(bottom)}, {random.choice(accessory)}, score_9" | |
# outfit = ["schoolgirl outfit", "playboy outfit", "red dress", "gala dress", "cheerleader outfit", "nurse outfit", "Kimono"] | |
def get_prompt(prompt, additional_prompt): | |
interior = "design-style interior designed (interior space),tungsten white balance,captured with a DSLR camera using f/10 aperture, 1/60 sec shutter speed, ISO 400, 20mm focal length" | |
default = "hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed" | |
default2 = f"professional 3d model {prompt},octane render,highly detailed,volumetric,dramatic lighting,hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed" | |
randomize = get_additional_prompt() | |
# nude = "NSFW,((nude)),medium bare breasts,hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed" | |
# bodypaint = "((fully naked with no clothes)),nude naked seethroughxray,invisiblebodypaint,rating_newd,NSFW" | |
lab_girl = "hyperrealistic photography, extremely detailed, shy assistant wearing minidress boots and gloves, laboratory background, score_9, 1girl" | |
pet_play = "hyperrealistic photography, extremely detailed, playful, blush, glasses, collar, score_9, HDA_pet_play" | |
bondage = "hyperrealistic photography, extremely detailed, submissive, glasses, score_9, HDA_Bondage" | |
# ahegao = "((invisible clothing)), hyperrealistic photography,exposed vagina,sexy,nsfw,HDA_Ahegao" | |
ahegao2 = "(invisiblebodypaint),rating_newd,HDA_Ahegao" | |
athleisure = "hyperrealistic photography, extremely detailed, 1girl athlete, exhausted embarrassed sweaty,outdoors, ((athleisure clothing)), score_9" | |
atompunk = "((atompunk world)), hyperrealistic photography, extremely detailed, short hair, bodysuit, glasses, neon cyberpunk background, score_9" | |
maid = "hyperrealistic photography, extremely detailed, shy, blushing, score_9, pastel background, HDA_unconventional_maid" | |
nundress = "hyperrealistic photography, extremely detailed, shy, blushing, fantasy background, score_9, HDA_NunDress" | |
naked_hoodie = "hyperrealistic photography, extremely detailed, medium hair, cityscape, (neon lights), score_9, HDA_NakedHoodie" | |
abg = "(1girl, asian body covered in words, words on body, tattoos of (words) on body),(masterpiece, best quality),medium breasts,(intricate details),unity 8k wallpaper,ultra detailed,(pastel colors),beautiful and aesthetic,see-through (clothes),detailed,solo" | |
# shibari = "extremely detailed, hyperrealistic photography, earrings, blushing, lace choker, tattoo, medium hair, score_9, HDA_Shibari" | |
shibari2 = "octane render, highly detailed, volumetric, HDA_Shibari" | |
if prompt == "": | |
girls = [randomize, pet_play, bondage, lab_girl, athleisure, atompunk, maid, nundress, naked_hoodie, abg, shibari2, ahegao2] | |
prompts_nsfw = [abg, shibari2, ahegao2] | |
prompt = f"{random.choice(girls)}" | |
prompt = f"boho chic" | |
# print(f"-------------{preset}-------------") | |
else: | |
prompt = f"Photo from Pinterest of {prompt} {interior}" | |
# prompt = default2 | |
return f"{prompt} f{additional_prompt}" | |
style_list = [ | |
{ | |
"name": "None", | |
"prompt": "" | |
}, | |
{ | |
"name": "Minimalistic", | |
"prompt": "Minimalist interior design,clean lines,neutral colors,uncluttered space,functional furniture,lots of natural light" | |
}, | |
{ | |
"name": "Boho", | |
"prompt": "Bohemian chic interior,eclectic mix of patterns and textures,vintage furniture,plants,woven textiles,warm earthy colors" | |
}, | |
{ | |
"name": "Farmhouse", | |
"prompt": "Modern farmhouse interior,rustic wood elements,shiplap walls,neutral color palette,industrial accents,cozy textiles" | |
}, | |
{ | |
"name": "Saudi Prince", | |
"prompt": "Opulent gold interior,luxurious ornate furniture,crystal chandeliers,rich fabrics,marble floors,intricate Arabic patterns" | |
}, | |
{ | |
"name": "Neoclassical", | |
"prompt": "Neoclassical interior design,elegant columns,ornate moldings,symmetrical layout,refined furniture,muted color palette" | |
}, | |
{ | |
"name": "Eclectic", | |
"prompt": "Eclectic interior design,mix of styles and eras,bold color combinations,diverse furniture pieces,unique art objects" | |
}, | |
{ | |
"name": "Parisian", | |
"prompt": "Parisian apartment interior,all-white color scheme,ornate moldings,herringbone wood floors,elegant furniture,large windows" | |
}, | |
{ | |
"name": "Hollywood", | |
"prompt": "Hollywood Regency interior,glamorous and luxurious,bold colors,mirrored surfaces,velvet upholstery,gold accents" | |
}, | |
{ | |
"name": "Scandinavian", | |
"prompt": "Scandinavian interior design,light wood tones,white walls,minimalist furniture,cozy textiles,hygge atmosphere" | |
}, | |
{ | |
"name": "Beach", | |
"prompt": "Coastal beach house interior,light blue and white color scheme,weathered wood,nautical accents,sheer curtains,ocean view" | |
}, | |
{ | |
"name": "Japanese", | |
"prompt": "Traditional Japanese interior,tatami mats,shoji screens,low furniture,zen garden view,minimalist decor,natural materials" | |
}, | |
{ | |
"name": "Midcentury Modern", | |
"prompt": "Mid-century modern interior,1950s-60s style furniture,organic shapes,warm wood tones,bold accent colors,large windows" | |
}, | |
{ | |
"name": "Retro Futurism", | |
"prompt": "Neon (atompunk world) retro cyberpunk background", | |
}, | |
{ | |
"name": "Texan", | |
"prompt": "Western cowboy interior,rustic wood beams,leather furniture,cowhide rugs,antler chandeliers,southwestern patterns" | |
}, | |
{ | |
"name": "Matrix", | |
"prompt": "Futuristic cyberpunk interior,neon accent lighting,holographic plants,sleek black surfaces,advanced gaming setup,transparent screens,Blade Runner inspired decor,high-tech minimalist furniture" | |
} | |
] | |
styles = {k["name"]: (k["prompt"]) for k in style_list} | |
STYLE_NAMES = list(styles.keys()) | |
def apply_style(style_name): | |
if style_name in styles: | |
p = styles.get(style_name, "none") | |
return p | |
css = """ | |
h1, h2, h3 { | |
text-align: center; | |
display: block; | |
} | |
footer { | |
visibility: hidden; | |
} | |
.gradio-container { | |
max-width: 1100px !important; | |
} | |
.gr-image { | |
display: flex; | |
justify-content: center; | |
align-items: center; | |
width: 100%; | |
height: 512px; | |
overflow: hidden; | |
} | |
.gr-image img { | |
width: 100%; | |
height: 100%; | |
object-fit: cover; | |
object-position: center; | |
} | |
""" | |
with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo: | |
############################################################################# | |
with gr.Row(): | |
with gr.Accordion("Advanced options", open=show_options, visible=show_options): | |
num_images = gr.Slider( | |
label="Images", minimum=1, maximum=4, value=1, step=1 | |
) | |
image_resolution = gr.Slider( | |
label="Image resolution", | |
minimum=256, | |
maximum=1024, | |
value=512, | |
step=256, | |
) | |
preprocess_resolution = gr.Slider( | |
label="Preprocess resolution", | |
minimum=128, | |
maximum=1024, | |
value=512, | |
step=1, | |
) | |
num_steps = gr.Slider( | |
label="Number of steps", minimum=1, maximum=100, value=15, step=1 | |
) # 20/4.5 or 12 without lora, 4 with lora | |
guidance_scale = gr.Slider( | |
label="Guidance scale", minimum=0.1, maximum=30.0, value=5.5, step=0.1 | |
) # 5 without lora, 2 with lora | |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
a_prompt = gr.Textbox( | |
label="Additional prompt", | |
value = "design-style interior designed (interior space), tungsten white balance, captured with a DSLR camera using f/10 aperture, 1/60 sec shutter speed, ISO 400, 20mm focal length" | |
) | |
n_prompt = gr.Textbox( | |
label="Negative prompt", | |
value="EasyNegativeV2, fcNeg, (badhandv4:1.4), (worst quality, low quality, bad quality, normal quality:2.0), (bad hands, missing fingers, extra fingers:2.0)", | |
) | |
############################################################################# | |
# input text | |
with gr.Column(): | |
prompt = gr.Textbox( | |
label="Custom Design", | |
placeholder="Enter a description (optional)", | |
) | |
# design options | |
with gr.Row(visible=True): | |
style_selection = gr.Radio( | |
show_label=True, | |
container=True, | |
interactive=True, | |
choices=STYLE_NAMES, | |
value="None", | |
label="Design Styles", | |
) | |
# input image | |
with gr.Row(equal_height=True): | |
with gr.Column(scale=1, min_width=300): | |
image = gr.Image( | |
label="Input", | |
sources=["upload"], | |
show_label=True, | |
mirror_webcam=True, | |
type="pil", | |
) | |
# run button | |
with gr.Column(): | |
run_button = gr.Button(value="Use this one", size="lg", visible=False) | |
# output image | |
with gr.Column(scale=1, min_width=300): | |
result = gr.Image( | |
label="Output", | |
interactive=False, | |
type="pil", | |
show_share_button= False, | |
) | |
# Use this image button | |
with gr.Column(): | |
use_ai_button = gr.Button(value="Use this one", size="lg", visible=False) | |
config = [ | |
image, | |
style_selection, | |
prompt, | |
a_prompt, | |
n_prompt, | |
num_images, | |
image_resolution, | |
preprocess_resolution, | |
num_steps, | |
guidance_scale, | |
seed, | |
] | |
with gr.Row(): | |
helper_text = gr.Markdown("## Tap and hold (on mobile) to save the image.", visible=True) | |
# image processing | |
def auto_process_image(image, style_selection, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed, progress=gr.Progress(track_tqdm=True)): | |
return process_image(image, style_selection, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed) | |
# AI image processing | |
def submit(previous_result, image, style_selection, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed, progress=gr.Progress(track_tqdm=True)): | |
# First, yield the previous result to update the input image immediately | |
yield previous_result, gr.update() | |
# Then, process the new input image | |
new_result = process_image(previous_result, style_selection, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed) | |
# Finally, yield the new result | |
yield previous_result, new_result | |
# Turn off buttons when processing | |
def turn_buttons_off(): | |
return gr.update(visible=False), gr.update(visible=False) | |
# Turn on buttons when processing is complete | |
def turn_buttons_on(): | |
return gr.update(visible=True), gr.update(visible=True) | |
def process_image( | |
image, | |
style_selection, | |
prompt, | |
a_prompt, | |
n_prompt, | |
num_images, | |
image_resolution, | |
preprocess_resolution, | |
num_steps, | |
guidance_scale, | |
seed, | |
): | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.cuda.manual_seed(seed) | |
preprocessor.load("NormalBae") | |
control_image = preprocessor( | |
image=image, | |
image_resolution=image_resolution, | |
detect_resolution=preprocess_resolution, | |
) | |
if style_selection is not None and style_selection != "None": | |
prompt = f"Photo from Pinterest of {apply_style(style_selection)} {prompt},{a_prompt}" | |
else: | |
prompt = str(get_prompt(prompt, a_prompt)) | |
negative_prompt = str(n_prompt) | |
print(prompt) | |
# Generate the initial room image | |
initial_result = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_images_per_prompt=1, | |
num_inference_steps=num_steps, | |
generator=generator, | |
image=control_image, | |
).images[0] | |
# # Randomly choose whether to add furniture and which type | |
# furniture_types = ["sofa", "table", "chair", "dresser", "bookshelf", "desk", "coffee table"] | |
# furniture_type = random.choice(furniture_types) | |
# furniture_mask = generate_furniture_mask(initial_result, furniture_type) | |
# furniture_prompt = f"{prompt}, with a {furniture_type} in the style of {style_selection}" | |
# print(furniture_prompt) | |
# # Use the inpainting pipeline to add furniture | |
# final_result = inpaint_pipe( | |
# prompt=furniture_prompt, | |
# image=initial_result, | |
# mask_image=furniture_mask, | |
# negative_prompt=negative_prompt, | |
# num_inference_steps=num_steps, | |
# guidance_scale=guidance_scale, | |
# generator=generator, | |
# ).images[0] | |
# Save and upload results | |
timestamp = int(time.time()) | |
img_path = f"{timestamp}.jpg" | |
results_path = f"{timestamp}_out.jpg" | |
imageio.imsave(img_path, image) | |
imageio.imsave(results_path, initial_result) | |
api.upload_file( | |
path_or_fileobj=img_path, | |
path_in_repo=img_path, | |
repo_id="broyang/interior-ai-outputs", | |
repo_type="dataset", | |
token=API_KEY, | |
run_as_future=True, | |
) | |
api.upload_file( | |
path_or_fileobj=results_path, | |
path_in_repo=results_path, | |
repo_id="broyang/interior-ai-outputs", | |
repo_type="dataset", | |
token=API_KEY, | |
run_as_future=True, | |
) | |
return initial_result | |
if prod: | |
demo.queue(max_size=20).launch(server_name="localhost", server_port=port) | |
else: | |
demo.queue(api_open=False).launch(show_api=False) |