interior-ai-designer / profiler.py
Bobby
profiler part 2
7332b87
raw
history blame
15.2 kB
import cProfile
import pstats
import io
import gc
import random
import time
import gradio as gr
import spaces
import imageio
from huggingface_hub import HfApi
import torch
from PIL import Image
from diffusers import (
ControlNetModel,
DPMSolverMultistepScheduler,
StableDiffusionControlNetPipeline,
)
from preprocess_anime import Preprocessor, conditionally_manage_memory
from settings import API_KEY, MAX_NUM_IMAGES, MAX_SEED
preprocessor = None
controlnet = None
scheduler = None
pipe = None
compiled = False
api = HfApi()
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def get_additional_prompt():
prompt = "hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
top = ["tank top", "blouse", "button up shirt", "sweater", "corset top"]
bottom = ["short skirt", "athletic shorts", "jean shorts", "pleated skirt", "short skirt", "leggings", "high-waisted shorts"]
accessory = ["knee-high boots", "gloves", "Thigh-high stockings", "Garter belt", "choker", "necklace", "headband", "headphones"]
return f"{prompt}, {random.choice(top)}, {random.choice(bottom)}, {random.choice(accessory)}, score_9"
# outfit = ["schoolgirl outfit", "playboy outfit", "red dress", "gala dress", "cheerleader outfit", "nurse outfit", "Kimono"]
def get_prompt(prompt, additional_prompt):
default = "hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
randomize = get_additional_prompt()
nude = "NSFW,((nude)),medium bare breasts,hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
bodypaint = "((fully naked with no clothes)),nude naked seethroughxray,invisiblebodypaint,rating_newd,NSFW"
lab_girl = "hyperrealistic photography, extremely detailed, shy assistant wearing minidress boots and gloves, laboratory background, score_9, 1girl"
pet_play = "hyperrealistic photography, extremely detailed, playful, blush, glasses, collar, score_9, HDA_pet_play"
bondage = "hyperrealistic photography, extremely detailed, submissive, glasses, score_9, HDA_Bondage"
ahegao = "((invisible clothing)), hyperrealistic photography,exposed vagina,sexy,nsfw,HDA_Ahegao"
ahegao2 = "(invisiblebodypaint),rating_newd,HDA_Ahegao"
athleisure = "hyperrealistic photography, extremely detailed, 1girl athlete, exhausted embarrassed sweaty,outdoors, ((athleisure clothing)), score_9"
atompunk = "((atompunk world)), hyperrealistic photography, extremely detailed, short hair, bodysuit, glasses, neon cyberpunk background, score_9"
maid = "hyperrealistic photography, extremely detailed, shy, blushing, score_9, pastel background, HDA_unconventional_maid"
nundress = "hyperrealistic photography, extremely detailed, shy, blushing, fantasy background, score_9, HDA_NunDress"
naked_hoodie = "hyperrealistic photography, extremely detailed, medium hair, cityscape, (neon lights), score_9, HDA_NakedHoodie"
abg = "(1girl, asian body covered in words, words on body, tattoos of (words) on body),(masterpiece, best quality),medium breasts,(intricate details),unity 8k wallpaper,ultra detailed,(pastel colors),beautiful and aesthetic,see-through (clothes),detailed,solo"
shibari = "extremely detailed, hyperrealistic photography, earrings, blushing, lace choker, tattoo, medium hair, score_9, HDA_Shibari"
if prompt == "":
prompts = [randomize, nude, bodypaint, pet_play, bondage, ahegao2, lab_girl, athleisure, atompunk, maid, nundress, naked_hoodie, abg, shibari]
prompts_nsfw = [nude, bodypaint, abg, ahegao2, shibari]
preset = random.choice(prompts)
prompt = f"{preset}"
# print(f"-------------{preset}-------------")
else:
# prompt = f"{prompt}, {randomize}"
prompt = f"{default},{prompt}"
print(f"{prompt}")
return prompt
def initialize_models():
global preprocessor, controlnet, scheduler, pipe
if preprocessor is None:
preprocessor = Preprocessor()
if controlnet is None:
model_id = "lllyasviel/control_v11p_sd15_normalbae"
print("initializing controlnet")
controlnet = ControlNetModel.from_pretrained(
model_id,
torch_dtype=torch.float16,
attn_implementation="flash_attention_2",
).to("cuda")
if scheduler is None:
scheduler = DPMSolverMultistepScheduler.from_pretrained(
"runwayml/stable-diffusion-v1-5",
solver_order=2,
subfolder="scheduler",
use_karras_sigmas=True,
final_sigmas_type="sigma_min",
algorithm_type="sde-dpmsolver++",
prediction_type="epsilon",
thresholding=False,
denoise_final=True,
device_map="cuda",
)
if pipe is None:
base_model_url = "https://huggingface.co/broyang/hentaidigitalart_v20/blob/main/realcartoon3d_v15.safetensors"
pipe = StableDiffusionControlNetPipeline.from_single_file(
base_model_url,
safety_checker=None,
controlnet=controlnet,
scheduler=scheduler,
torch_dtype=torch.float16,
)
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="EasyNegativeV2.safetensors", token="EasyNegativeV2")
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="badhandv4.pt", token="badhandv4")
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Ahegao.pt", token="HDA_Ahegao")
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Bondage.pt", token="HDA_Bondage")
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_pet_play.pt", token="HDA_pet_play")
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="fcNeg-neg.pt", token="fcNeg-neg")
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_unconventional maid.pt", token="HDA_unconventional_maid")
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_NakedHoodie.pt", token="HDA_NakedHoodie")
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_NunDress.pt", token="HDA_NunDress")
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Shibari.pt", token="HDA_Shibari")
pipe.to("cuda")
print("---------------Loaded controlnet pipeline---------------")
@spaces.GPU(duration=11)
@torch.inference_mode()
def process_image(
image,
prompt,
a_prompt,
n_prompt,
num_images,
image_resolution,
preprocess_resolution,
num_steps,
guidance_scale,
seed,
):
initialize_models()
preprocessor.load("NormalBae")
control_image = preprocessor(
image=image,
image_resolution=image_resolution,
detect_resolution=preprocess_resolution,
)
custom_prompt = str(get_prompt(prompt, a_prompt))
negative_prompt = str(n_prompt)
global compiled
generator = torch.cuda.manual_seed(seed)
if not compiled:
print("-----------------------------------Not Compiled-----------------------------------")
compiled = True
start = time.time()
results = pipe(
prompt=custom_prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_images_per_prompt=num_images,
num_inference_steps=num_steps,
generator=generator,
image=control_image,
).images[0]
print(f"Inference done in: {time.time() - start:.2f} seconds")
timestamp = int(time.time())
img_path = f"{timestamp}.jpg"
results_path = f"{timestamp}_out.jpg"
imageio.imsave(img_path, image)
results.save(results_path)
api.upload_file(
path_or_fileobj=img_path,
path_in_repo=img_path,
repo_id="broyang/anime-ai-outputs",
repo_type="dataset",
token=API_KEY,
run_as_future=True,
)
api.upload_file(
path_or_fileobj=results_path,
path_in_repo=results_path,
repo_id="broyang/anime-ai-outputs",
repo_type="dataset",
token=API_KEY,
run_as_future=True,
)
conditionally_manage_memory()
results.save("temp_image.png")
return results
def main():
prod = True
show_options = True
if prod:
show_options = False
print("CUDA version:", torch.version.cuda)
print("loading pipe")
css = """
h1 {
text-align: center;
display:block;
}
h2 {
text-align: center;
display:block;
}
h3 {
text-align: center;
display:block;
}
footer {visibility: hidden}
"""
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
with gr.Row():
with gr.Accordion("Advanced options", open=show_options, visible=show_options):
num_images = gr.Slider(
label="Images", minimum=1, maximum=MAX_NUM_IMAGES, value=1, step=1
)
image_resolution = gr.Slider(
label="Image resolution",
minimum=256,
maximum=1024,
value=768,
step=256,
)
preprocess_resolution = gr.Slider(
label="Preprocess resolution",
minimum=128,
maximum=1024,
value=768,
step=1,
)
num_steps = gr.Slider(
label="Number of steps", minimum=1, maximum=100, value=12, step=1
)
guidance_scale = gr.Slider(
label="Guidance scale", minimum=0.1, maximum=30.0, value=5.5, step=0.1
)
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
a_prompt = gr.Textbox(
label="Additional prompt",
value = ""
)
n_prompt = gr.Textbox(
label="Negative prompt",
value="EasyNegativeV2, fcNeg, (badhandv4:1.4), (worst quality, low quality, bad quality, normal quality:2.0), (bad hands, missing fingers, extra fingers:2.0)",
)
with gr.Column():
prompt = gr.Textbox(
label="Description",
placeholder="Leave empty for something spicy 👀",
)
with gr.Row():
with gr.Column():
image = gr.Image(
label="Input",
sources=["upload"],
show_label=True,
format="webp",
)
with gr.Column():
run_button = gr.Button(value="Use this one", size=["lg"], visible=False)
with gr.Column():
result = gr.Image(
label="Anime AI",
interactive=False,
format="webp",
visible = True,
show_share_button= False,
)
with gr.Column():
use_ai_button = gr.Button(value="Use this one", size=["lg"], visible=False)
config = [
image,
prompt,
a_prompt,
n_prompt,
num_images,
image_resolution,
preprocess_resolution,
num_steps,
guidance_scale,
seed,
]
@spaces.GPU(duration=11)
@torch.inference_mode()
@gr.on(triggers=[image.upload], inputs=config, outputs=[result])
def auto_process_image(image, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed):
return process_image(image, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed)
@gr.on(triggers=[image.upload], inputs=None, outputs=[use_ai_button, run_button])
def turn_buttons_off():
return gr.update(visible=False), gr.update(visible=False)
@gr.on(triggers=[use_ai_button.click], inputs=None, outputs=[use_ai_button, run_button])
def turn_buttons_off():
return gr.update(visible=False), gr.update(visible=False)
@gr.on(triggers=[run_button.click], inputs=None, outputs=[use_ai_button, run_button])
def turn_buttons_off():
return gr.update(visible=False), gr.update(visible=False)
@gr.on(triggers=[result.change], inputs=None, outputs=[use_ai_button, run_button])
def turn_buttons_on():
return gr.update(visible=True), gr.update(visible=True)
with gr.Row():
helper_text = gr.Markdown("## Tap and hold (on mobile) to save the image.", visible=True)
prompt.submit(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
show_progress="none",
).then(
fn=auto_process_image,
inputs=config,
outputs=result,
api_name=False,
show_progress="minimal",
)
run_button.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
show_progress="none",
).then(
fn=auto_process_image,
inputs=config,
outputs=result,
show_progress="minimal",
)
def update_config():
try:
print("Updating image to AI Temp Image")
ai_temp_image = Image.open("temp_image.png")
return ai_temp_image
except FileNotFoundError:
print("No AI Image Available")
return None
use_ai_button.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
show_progress="none",
).then(
fn=lambda _: update_config(),
inputs=[image],
outputs=image,
show_progress="minimal",
).then(
fn=auto_process_image,
inputs=[image, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed],
outputs=result,
show_progress="minimal",
)
demo.launch()
if __name__ == "__main__":
pr = cProfile.Profile()
pr.enable()
main()
pr.disable()
s = io.StringIO()
sortby = 'cumulative'
ps = pstats.Stats(pr, stream=s).sort_stats(sortby)
ps.print_stats()
print(s.getvalue())