KingNish commited on
Commit
0b6644c
1 Parent(s): 0bc476b
Files changed (1) hide show
  1. app.py +108 -94
app.py CHANGED
@@ -11,125 +11,139 @@ import numpy as np
11
  import os
12
  import tempfile
13
  import uuid
 
 
 
14
 
15
- torch.set_float32_matmul_precision(["high", "highest"][0])
 
 
16
 
 
17
  birefnet = AutoModelForImageSegmentation.from_pretrained(
18
  "ZhengPeng7/BiRefNet", trust_remote_code=True
19
  )
20
- birefnet.to("cuda")
21
- transform_image = transforms.Compose(
22
- [
23
- transforms.Resize((1024, 1024)),
24
- transforms.ToTensor(),
25
- transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
26
- ]
27
- )
28
-
29
- BATCH_SIZE = 3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
 
31
  @spaces.GPU
32
  def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=0, video_handling="slow_down"):
33
  try:
34
- video = mp.VideoFileClip(vid)
 
35
  if fps == 0:
36
  fps = video.fps
37
  audio = video.audio
38
- frames = video.iter_frames(fps=fps)
39
- processed_frames = []
40
- yield gr.update(visible=True), gr.update(visible=False)
41
-
 
 
42
  if bg_type == "Video":
43
- background_video = mp.VideoFileClip(bg_video)
44
- if background_video.duration < video.duration:
45
  if video_handling == "slow_down":
46
- background_video = background_video.fx(mp.vfx.speedx, factor=video.duration / background_video.duration)
 
47
  else:
48
- background_video = mp.concatenate_videoclips([background_video] * int(video.duration / background_video.duration + 1))
49
- background_frames = list(background_video.iter_frames(fps=fps))
50
- else:
51
- background_frames = None
52
-
53
- bg_frame_index = 0
54
- frame_batch = []
55
-
56
- for i, frame in enumerate(frames):
57
- frame_batch.append(frame)
58
- if len(frame_batch) == BATCH_SIZE or i == video.fps * video.duration -1: # Process batch or last frames
59
- pil_images = [Image.fromarray(f) for f in frame_batch]
60
-
61
-
 
62
  if bg_type == "Color":
63
- processed_images = [process(img, color) for img in pil_images]
64
  elif bg_type == "Image":
65
- processed_images = [process(img, bg_image) for img in pil_images]
66
- elif bg_type == "Video":
67
- processed_images = []
68
- for _ in range(len(frame_batch)):
69
- if video_handling == "slow_down":
70
- background_frame = background_frames[bg_frame_index % len(background_frames)]
71
- bg_frame_index += 1
72
- background_image = Image.fromarray(background_frame)
73
- else: # video_handling == "loop"
74
- background_frame = background_frames[bg_frame_index % len(background_frames)]
75
- bg_frame_index += 1
76
- background_image = Image.fromarray(background_frame)
77
-
78
- processed_images.append(process(pil_images[_],background_image))
79
-
80
-
81
- else:
82
- processed_images = pil_images
83
-
84
- for processed_image in processed_images:
85
- processed_frames.append(np.array(processed_image))
86
- yield processed_image, None
87
- frame_batch = [] # Clear the batch
88
-
89
-
90
  processed_video = mp.ImageSequenceClip(processed_frames, fps=fps)
91
- processed_video = processed_video.set_audio(audio)
92
-
93
- temp_dir = "temp"
94
- os.makedirs(temp_dir, exist_ok=True)
95
- unique_filename = str(uuid.uuid4()) + ".mp4"
96
- temp_filepath = os.path.join(temp_dir, unique_filename)
97
-
98
- processed_video.write_videofile(temp_filepath, codec="libx264", logger=None)
99
-
100
  yield gr.update(visible=False), gr.update(visible=True)
101
- yield processed_image, temp_filepath
102
-
103
  except Exception as e:
104
  print(f"Error: {e}")
105
  yield gr.update(visible=False), gr.update(visible=True)
106
  yield None, f"Error processing video: {e}"
107
 
108
 
109
- def process(image, bg):
110
- image_size = image.size
111
- input_images = transform_image(image).unsqueeze(0).to("cuda")
112
- # Prediction
113
- with torch.no_grad():
114
- preds = birefnet(input_images)[-1].sigmoid().cpu()
115
- pred = preds[0].squeeze()
116
- pred_pil = transforms.ToPILImage()(pred)
117
- mask = pred_pil.resize(image_size)
118
-
119
- if isinstance(bg, str) and bg.startswith("#"):
120
- color_rgb = tuple(int(bg[i:i+2], 16) for i in (1, 3, 5))
121
- background = Image.new("RGBA", image_size, color_rgb + (255,))
122
- elif isinstance(bg, Image.Image):
123
- background = bg.convert("RGBA").resize(image_size)
124
- else:
125
- background = Image.open(bg).convert("RGBA").resize(image_size)
126
-
127
- # Composite the image onto the background using the mask
128
- image = Image.composite(image, background, mask)
129
-
130
- return image
131
-
132
-
133
  with gr.Blocks(theme=gr.themes.Ocean()) as demo:
134
  with gr.Row():
135
  in_video = gr.Video(label="Input Video", interactive=True)
 
11
  import os
12
  import tempfile
13
  import uuid
14
+ from concurrent.futures import ThreadPoolExecutor
15
+ import torch.nn as nn
16
+ import torch.cuda.amp # for mixed precision training
17
 
18
+ # Enable tensor cores for faster computation
19
+ torch.set_float32_matmul_precision("high")
20
+ torch.backends.cudnn.benchmark = True # Enable cudnn autotuner
21
 
22
+ # Initialize model with optimization flags
23
  birefnet = AutoModelForImageSegmentation.from_pretrained(
24
  "ZhengPeng7/BiRefNet", trust_remote_code=True
25
  )
26
+ birefnet.to("cuda").eval() # Ensure model is in eval mode
27
+ birefnet = torch.jit.script(birefnet) # JIT compilation for faster inference
28
+
29
+ # Pre-compile transforms for better performance
30
+ transform_image = transforms.Compose([
31
+ transforms.Resize((1024, 1024), antialias=True),
32
+ transforms.ToTensor(),
33
+ transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
34
+ ])
35
+
36
+ # Increased batch size for better GPU utilization
37
+ BATCH_SIZE = 8 # Increased from 3
38
+ NUM_WORKERS = 4 # For parallel processing
39
+
40
+ # Create a thread pool for parallel processing
41
+ executor = ThreadPoolExecutor(max_workers=NUM_WORKERS)
42
+
43
+ def process_batch(batch_data):
44
+ """Process a batch of frames in parallel"""
45
+ images, backgrounds, image_sizes = zip(*batch_data)
46
+
47
+ # Stack images for batch processing
48
+ input_tensor = torch.stack(images).to("cuda")
49
+
50
+ # Use automatic mixed precision for faster computation
51
+ with torch.cuda.amp.autocast():
52
+ with torch.no_grad():
53
+ preds = birefnet(input_tensor)[-1].sigmoid().cpu()
54
+
55
+ processed_frames = []
56
+ for pred, bg, size in zip(preds, backgrounds, image_sizes):
57
+ mask = transforms.ToPILImage()(pred.squeeze()).resize(size)
58
+
59
+ if isinstance(bg, str) and bg.startswith("#"):
60
+ color_rgb = tuple(int(bg[i:i+2], 16) for i in (1, 3, 5))
61
+ background = Image.new("RGBA", size, color_rgb + (255,))
62
+ elif isinstance(bg, Image.Image):
63
+ background = bg.convert("RGBA").resize(size)
64
+ else:
65
+ background = Image.open(bg).convert("RGBA").resize(size)
66
+
67
+ # Use PIL's faster composite operation
68
+ image = Image.composite(images[0].resize(size), background, mask)
69
+ processed_frames.append(np.array(image))
70
+
71
+ return processed_frames
72
 
73
  @spaces.GPU
74
  def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=0, video_handling="slow_down"):
75
  try:
76
+ # Load video more efficiently
77
+ video = mp.VideoFileClip(vid, audio_buffersize=2000)
78
  if fps == 0:
79
  fps = video.fps
80
  audio = video.audio
81
+
82
+ # Pre-calculate video parameters
83
+ total_frames = int(video.fps * video.duration)
84
+ frames = list(video.iter_frames(fps=fps)) # Load all frames at once
85
+
86
+ # Pre-process background if using video
87
  if bg_type == "Video":
88
+ bg_video_clip = mp.VideoFileClip(bg_video)
89
+ if bg_video_clip.duration < video.duration:
90
  if video_handling == "slow_down":
91
+ bg_video_clip = bg_video_clip.fx(mp.vfx.speedx,
92
+ factor=video.duration / bg_video_clip.duration)
93
  else:
94
+ multiplier = int(video.duration / bg_video_clip.duration + 1)
95
+ bg_video_clip = mp.concatenate_videoclips([bg_video_clip] * multiplier)
96
+ background_frames = list(bg_video_clip.iter_frames(fps=fps))
97
+
98
+ # Process frames in batches
99
+ processed_frames = []
100
+ for i in range(0, len(frames), BATCH_SIZE):
101
+ batch_frames = frames[i:i + BATCH_SIZE]
102
+ batch_data = []
103
+
104
+ for j, frame in enumerate(batch_frames):
105
+ pil_image = Image.fromarray(frame)
106
+ image_size = pil_image.size
107
+ transformed_image = transform_image(pil_image)
108
+
109
  if bg_type == "Color":
110
+ bg = color
111
  elif bg_type == "Image":
112
+ bg = bg_image
113
+ else: # Video
114
+ frame_idx = (i + j) % len(background_frames)
115
+ bg = Image.fromarray(background_frames[frame_idx])
116
+
117
+ batch_data.append((transformed_image, bg, image_size))
118
+
119
+ # Process batch
120
+ batch_results = process_batch(batch_data)
121
+ processed_frames.extend(batch_results)
122
+
123
+ # Yield progress updates
124
+ if len(batch_results) > 0:
125
+ yield batch_results[-1], None
126
+
127
+ # Create output video
 
 
 
 
 
 
 
 
 
128
  processed_video = mp.ImageSequenceClip(processed_frames, fps=fps)
129
+ if audio is not None:
130
+ processed_video = processed_video.set_audio(audio)
131
+
132
+ # Use temporary file
133
+ with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp_file:
134
+ output_path = tmp_file.name
135
+ processed_video.write_videofile(output_path, codec="libx264",
136
+ preset='ultrafast', threads=NUM_WORKERS)
137
+
138
  yield gr.update(visible=False), gr.update(visible=True)
139
+ yield processed_frames[-1], output_path
140
+
141
  except Exception as e:
142
  print(f"Error: {e}")
143
  yield gr.update(visible=False), gr.update(visible=True)
144
  yield None, f"Error processing video: {e}"
145
 
146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
147
  with gr.Blocks(theme=gr.themes.Ocean()) as demo:
148
  with gr.Row():
149
  in_video = gr.Video(label="Input Video", interactive=True)