Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import torch | |
from diffusers import CogVideoXImageToVideoPipeline | |
from diffusers.utils import export_to_video, load_image | |
import gradio as gr | |
def generate_video(prompt, image): | |
# Carregar a pipeline pré-treinada | |
pipe = CogVideoXImageToVideoPipeline.from_pretrained( | |
"THUDM/CogVideoX-5b-I2V", | |
torch_dtype=torch.bfloat16 | |
) | |
pipe.enable_sequential_cpu_offload() | |
pipe.vae.enable_tiling() | |
pipe.vae.enable_slicing() | |
video = pipe( | |
prompt=prompt, | |
image=image, | |
num_videos_per_prompt=1, | |
num_inference_steps=50, | |
num_frames=49, | |
guidance_scale=6, | |
generator=torch.Generator(device="cuda").manual_seed(42), | |
).frames[0] | |
video_path = "output.mp4" | |
export_to_video(video, video_path, fps=8) | |
return video_path | |
# Interface Gradio | |
with gr.Blocks() as demo: | |
gr.Markdown("# Image to Video Generation") | |
with gr.Row(): | |
# Entrada de texto para o prompt | |
prompt_input = gr.Textbox(label="Prompt", value="A little girl is riding a bicycle at high speed. Focused, detailed, realistic.") | |
# Upload de imagem | |
image_input = gr.Image(label="Upload an Image", type="pil") | |
# Botão para gerar o vídeo | |
generate_button = gr.Button("Generate Video") | |
# Saída do vídeo gerado | |
video_output = gr.Video(label="Generated Video") | |
# Ação ao clicar no botão | |
generate_button.click(fn=generate_video, inputs=[prompt_input, image_input], outputs=video_output) | |
# Rodar a interface | |
demo.launch() | |