|
""" |
|
taken from https://github.com/hila-chefer/Transformer-MM-Explainability |
|
added similarity_score |
|
""" |
|
|
|
import hashlib |
|
import os |
|
import urllib |
|
import warnings |
|
from typing import Union, List |
|
import re |
|
import html |
|
|
|
import torch |
|
from PIL import Image |
|
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize |
|
from tqdm import tqdm |
|
import ftfy |
|
|
|
from transformers import BatchFeature |
|
|
|
from .model import build_model |
|
from .simple_tokenizer import SimpleTokenizer as _Tokenizer |
|
|
|
__all__ = ["available_models", "load", "tokenize"] |
|
_tokenizer = _Tokenizer() |
|
|
|
_MODELS = { |
|
"RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt", |
|
"RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt", |
|
"RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt", |
|
"ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt", |
|
} |
|
|
|
|
|
def _download(url: str, root: str = os.path.expanduser("~/.cache/clip")): |
|
os.makedirs(root, exist_ok=True) |
|
filename = os.path.basename(url) |
|
|
|
expected_sha256 = url.split("/")[-2] |
|
download_target = os.path.join(root, filename) |
|
|
|
if os.path.exists(download_target) and not os.path.isfile(download_target): |
|
raise RuntimeError(f"{download_target} exists and is not a regular file") |
|
|
|
if os.path.isfile(download_target): |
|
if ( |
|
hashlib.sha256(open(download_target, "rb").read()).hexdigest() |
|
== expected_sha256 |
|
): |
|
return download_target |
|
else: |
|
warnings.warn( |
|
f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file" |
|
) |
|
|
|
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output: |
|
with tqdm( |
|
total=int(source.info().get("Content-Length")), |
|
ncols=80, |
|
unit="iB", |
|
unit_scale=True, |
|
) as loop: |
|
while True: |
|
buffer = source.read(8192) |
|
if not buffer: |
|
break |
|
|
|
output.write(buffer) |
|
loop.update(len(buffer)) |
|
|
|
if ( |
|
hashlib.sha256(open(download_target, "rb").read()).hexdigest() |
|
!= expected_sha256 |
|
): |
|
raise RuntimeError( |
|
f"Model has been downloaded but the SHA256 checksum does not not match" |
|
) |
|
|
|
return download_target |
|
|
|
|
|
def _transform(n_px): |
|
return Compose( |
|
[ |
|
Resize(n_px, interpolation=Image.BICUBIC), |
|
CenterCrop(n_px), |
|
lambda image: image.convert("RGB"), |
|
ToTensor(), |
|
Normalize( |
|
(0.48145466, 0.4578275, 0.40821073), |
|
(0.26862954, 0.26130258, 0.27577711), |
|
), |
|
] |
|
) |
|
|
|
|
|
def available_models() -> List[str]: |
|
"""Returns the names of available CLIP models""" |
|
return list(_MODELS.keys()) |
|
|
|
|
|
def load( |
|
name: str, |
|
device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", |
|
jit=True, |
|
): |
|
"""Load a CLIP model |
|
|
|
Parameters |
|
---------- |
|
name : str |
|
A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict |
|
|
|
device : Union[str, torch.device] |
|
The device to put the loaded model |
|
|
|
jit : bool |
|
Whether to load the optimized JIT model (default) or more hackable non-JIT model. |
|
|
|
Returns |
|
------- |
|
model : torch.nn.Module |
|
The CLIP model |
|
|
|
preprocess : Callable[[PIL.Image], torch.Tensor] |
|
A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input |
|
""" |
|
if name in _MODELS: |
|
model_path = _download(_MODELS[name]) |
|
elif os.path.isfile(name): |
|
model_path = name |
|
else: |
|
raise RuntimeError( |
|
f"Model {name} not found; available models = {available_models()}" |
|
) |
|
|
|
try: |
|
|
|
model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval() |
|
state_dict = None |
|
except RuntimeError: |
|
|
|
if jit: |
|
warnings.warn( |
|
f"File {model_path} is not a JIT archive. Loading as a state dict instead" |
|
) |
|
jit = False |
|
state_dict = torch.load(model_path, map_location="cpu") |
|
|
|
if not jit: |
|
model = build_model(state_dict or model.state_dict()).to(device) |
|
if str(device) == "cpu": |
|
model.float() |
|
return model, _transform(model.visual.input_resolution) |
|
|
|
|
|
device_holder = torch.jit.trace( |
|
lambda: torch.ones([]).to(torch.device(device)), example_inputs=[] |
|
) |
|
device_node = [ |
|
n |
|
for n in device_holder.graph.findAllNodes("prim::Constant") |
|
if "Device" in repr(n) |
|
][-1] |
|
|
|
def patch_device(module): |
|
graphs = [module.graph] if hasattr(module, "graph") else [] |
|
if hasattr(module, "forward1"): |
|
graphs.append(module.forward1.graph) |
|
|
|
for graph in graphs: |
|
for node in graph.findAllNodes("prim::Constant"): |
|
if "value" in node.attributeNames() and str(node["value"]).startswith( |
|
"cuda" |
|
): |
|
node.copyAttributes(device_node) |
|
|
|
model.apply(patch_device) |
|
patch_device(model.encode_image) |
|
patch_device(model.encode_text) |
|
|
|
|
|
if str(device) == "cpu": |
|
float_holder = torch.jit.trace( |
|
lambda: torch.ones([]).float(), example_inputs=[] |
|
) |
|
float_input = list(float_holder.graph.findNode("aten::to").inputs())[1] |
|
float_node = float_input.node() |
|
|
|
def patch_float(module): |
|
graphs = [module.graph] if hasattr(module, "graph") else [] |
|
if hasattr(module, "forward1"): |
|
graphs.append(module.forward1.graph) |
|
|
|
for graph in graphs: |
|
for node in graph.findAllNodes("aten::to"): |
|
inputs = list(node.inputs()) |
|
for i in [ |
|
1, |
|
2, |
|
]: |
|
if inputs[i].node()["value"] == 5: |
|
inputs[i].node().copyAttributes(float_node) |
|
|
|
model.apply(patch_float) |
|
patch_float(model.encode_image) |
|
patch_float(model.encode_text) |
|
|
|
model.float() |
|
|
|
return model, _transform(model.input_resolution.item()) |
|
|
|
|
|
def tokenize( |
|
texts: Union[str, List[str]], context_length: int = 77 |
|
) -> torch.LongTensor: |
|
""" |
|
Returns the tokenized representation of given input string(s) |
|
|
|
Parameters |
|
---------- |
|
texts : Union[str, List[str]] |
|
An input string or a list of input strings to tokenize |
|
|
|
context_length : int |
|
The context length to use; all CLIP models use 77 as the context length |
|
|
|
Returns |
|
------- |
|
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length] |
|
""" |
|
if isinstance(texts, str): |
|
texts = [texts] |
|
|
|
sot_token = _tokenizer.encoder["<|startoftext|>"] |
|
eot_token = _tokenizer.encoder["<|endoftext|>"] |
|
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts] |
|
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) |
|
|
|
for i, tokens in enumerate(all_tokens): |
|
if len(tokens) > context_length: |
|
raise RuntimeError( |
|
f"Input {texts[i]} is too long for context length {context_length}" |
|
) |
|
result[i, : len(tokens)] = torch.tensor(tokens) |
|
|
|
return result |
|
|
|
|
|
def basic_clean(text): |
|
text = ftfy.fix_text(text) |
|
text = html.unescape(html.unescape(text)) |
|
return text.strip() |
|
|
|
|
|
def whitespace_clean(text): |
|
text = re.sub(r"\s+", " ", text) |
|
text = text.strip() |
|
return text |
|
|
|
|
|
def tokenize_ja( |
|
tokenizer, |
|
texts: Union[str, List[str]], |
|
max_seq_len: int = 77, |
|
): |
|
""" |
|
This is a function that have the original clip's code has. |
|
https://github.com/openai/CLIP/blob/main/clip/clip.py#L195 |
|
""" |
|
if isinstance(texts, str): |
|
texts = [texts] |
|
texts = [whitespace_clean(basic_clean(text)) for text in texts] |
|
|
|
inputs = tokenizer( |
|
texts, |
|
max_length=max_seq_len - 1, |
|
padding="max_length", |
|
truncation=True, |
|
add_special_tokens=False, |
|
) |
|
|
|
input_ids = [[tokenizer.bos_token_id] + ids for ids in inputs["input_ids"]] |
|
attention_mask = [[1] + am for am in inputs["attention_mask"]] |
|
position_ids = [list(range(0, len(input_ids[0])))] * len(texts) |
|
|
|
return BatchFeature( |
|
{ |
|
"input_ids": torch.tensor(input_ids, dtype=torch.long), |
|
"attention_mask": torch.tensor(attention_mask, dtype=torch.long), |
|
"position_ids": torch.tensor(position_ids, dtype=torch.long), |
|
} |
|
) |
|
|
|
|
|
def similarity_score(clip_model, image, target_features): |
|
image_features = clip_model.encode_image(image) |
|
|
|
image_features_norm = image_features.norm(dim=-1, keepdim=True) |
|
image_features_new = image_features / image_features_norm |
|
target_features_norm = target_features.norm(dim=-1, keepdim=True) |
|
target_features_new = target_features / target_features_norm |
|
|
|
return image_features_new[0].dot(target_features_new[0]) * 100 |
|
|