Spaces:
Running
Running
""" | |
Copyright (c) Meta Platforms, Inc. and affiliates. | |
All rights reserved. | |
This source code is licensed under the license found in the | |
LICENSE file in the root directory of this source tree. | |
""" | |
from tempfile import NamedTemporaryFile | |
import argparse | |
import torch | |
import gradio as gr | |
from audiocraft.models import MusicGen | |
from audiocraft.data.audio import audio_write | |
MODEL = None | |
def load_model(version): | |
print("Loading model", version) | |
return MusicGen.get_pretrained(version) | |
def predict(model, text, melody, duration, topk, topp, temperature, cfg_coef): | |
global MODEL | |
topk = int(topk) | |
if MODEL is None or MODEL.name != model: | |
MODEL = load_model(model) | |
if duration > MODEL.lm.cfg.dataset.segment_duration: | |
raise gr.Error("MusicGen currently supports durations of up to 30 seconds!") | |
MODEL.set_generation_params( | |
use_sampling=True, | |
top_k=topk, | |
top_p=topp, | |
temperature=temperature, | |
cfg_coef=cfg_coef, | |
duration=duration, | |
) | |
if melody: | |
sr, melody = melody[0], torch.from_numpy(melody[1]).to(MODEL.device).float().t().unsqueeze(0) | |
print(melody.shape) | |
if melody.dim() == 2: | |
melody = melody[None] | |
melody = melody[..., :int(sr * MODEL.lm.cfg.dataset.segment_duration)] | |
output = MODEL.generate_with_chroma( | |
descriptions=[text], | |
melody_wavs=melody, | |
melody_sample_rate=sr, | |
progress=False | |
) | |
else: | |
output = MODEL.generate(descriptions=[text], progress=False) | |
output = output.detach().cpu().float()[0] | |
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file: | |
audio_write( | |
file.name, output, MODEL.sample_rate, strategy="loudness", | |
loudness_headroom_db=16, loudness_compressor=True, add_suffix=False) | |
waveform_video = gr.make_waveform(file.name) | |
return waveform_video | |
def ui(**kwargs): | |
with gr.Blocks() as interface: | |
gr.Markdown( | |
""" | |
# MusicGen | |
This is the demo for [MusicGen](https://github.com/facebookresearch/audiocraft), a simple and controllable model for music generation | |
presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284). | |
<br/> | |
<a href="https://huggingface.co/spaces/musicgen/MusicGen?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank"> | |
<img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> | |
for longer sequences, more control and no queue.</p> | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
text = gr.Text(label="Input Text", interactive=True) | |
melody = gr.Audio(source="upload", type="numpy", label="Melody Condition (optional)", interactive=True) | |
with gr.Row(): | |
submit = gr.Button("Submit") | |
with gr.Row(): | |
model = gr.Radio(["melody", "medium", "small", "large"], label="Model", value="melody", interactive=True) | |
with gr.Row(): | |
duration = gr.Slider(minimum=1, maximum=30, value=10, label="Duration", interactive=True) | |
with gr.Row(): | |
topk = gr.Number(label="Top-k", value=250, interactive=True) | |
topp = gr.Number(label="Top-p", value=0, interactive=True) | |
temperature = gr.Number(label="Temperature", value=1.0, interactive=True) | |
cfg_coef = gr.Number(label="Classifier Free Guidance", value=3.0, interactive=True) | |
with gr.Column(): | |
output = gr.Video(label="Generated Music") | |
submit.click(predict, inputs=[model, text, melody, duration, topk, topp, temperature, cfg_coef], outputs=[output]) | |
gr.Examples( | |
fn=predict, | |
examples=[ | |
[ | |
"An 80s driving pop song with heavy drums and synth pads in the background", | |
"./assets/bach.mp3", | |
"melody" | |
], | |
[ | |
"A cheerful country song with acoustic guitars", | |
"./assets/bolero_ravel.mp3", | |
"melody" | |
], | |
[ | |
"90s rock song with electric guitar and heavy drums", | |
None, | |
"medium" | |
], | |
[ | |
"a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions", | |
"./assets/bach.mp3", | |
"melody" | |
], | |
[ | |
"lofi slow bpm electro chill with organic samples", | |
None, | |
"medium", | |
], | |
], | |
inputs=[text, melody, model], | |
outputs=[output] | |
) | |
gr.Markdown( | |
""" | |
### More details | |
The model will generate a short music extract based on the description you provided. | |
You can generate up to 30 seconds of audio. | |
We present 4 model variations: | |
1. Melody -- a music generation model capable of generating music condition on text and melody inputs. **Note**, you can also use text only. | |
2. Small -- a 300M transformer decoder conditioned on text only. | |
3. Medium -- a 1.5B transformer decoder conditioned on text only. | |
4. Large -- a 3.3B transformer decoder conditioned on text only (might OOM for the longest sequences.) | |
When using `melody`, ou can optionaly provide a reference audio from | |
which a broad melody will be extracted. The model will then try to follow both the description and melody provided. | |
You can also use your own GPU or a Google Colab by following the instructions on our repo. | |
See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft) | |
for more details. | |
""" | |
) | |
# Show the interface | |
launch_kwargs = {} | |
username = kwargs.get('username') | |
password = kwargs.get('password') | |
server_port = kwargs.get('server_port', 0) | |
inbrowser = kwargs.get('inbrowser', False) | |
share = kwargs.get('share', False) | |
server_name = kwargs.get('listen') | |
launch_kwargs['server_name'] = server_name | |
if username and password: | |
launch_kwargs['auth'] = (username, password) | |
if server_port > 0: | |
launch_kwargs['server_port'] = server_port | |
if inbrowser: | |
launch_kwargs['inbrowser'] = inbrowser | |
if share: | |
launch_kwargs['share'] = share | |
interface.queue().launch(**launch_kwargs, max_threads=1) | |
if __name__ == "__main__": | |
# torch.cuda.set_per_process_memory_fraction(0.48) | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
'--listen', | |
type=str, | |
default='127.0.0.1', | |
help='IP to listen on for connections to Gradio', | |
) | |
parser.add_argument( | |
'--username', type=str, default='', help='Username for authentication' | |
) | |
parser.add_argument( | |
'--password', type=str, default='', help='Password for authentication' | |
) | |
parser.add_argument( | |
'--server_port', | |
type=int, | |
default=0, | |
help='Port to run the server listener on', | |
) | |
parser.add_argument( | |
'--inbrowser', action='store_true', help='Open in browser' | |
) | |
parser.add_argument( | |
'--share', action='store_true', help='Share the gradio UI' | |
) | |
args = parser.parse_args() | |
ui( | |
username=args.username, | |
password=args.password, | |
inbrowser=args.inbrowser, | |
server_port=args.server_port, | |
share=args.share, | |
listen=args.listen | |
) | |