briangilbert's picture
Create app.py
577d9b4 verified
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import numpy as np
# Load tokenizer and model from Hugging Face Hub
MODEL_NAME = "briangilbert/working"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
# Define labels
id2label = {0: "NOT SCAM", 1: "SCAM"}
# Streamlit UI
st.title("πŸ’¬ Fraud Detection in Text")
st.write("Enter a dialogue and check if it's a **SCAM** or **NOT SCAM**.")
# Text input
user_input = st.text_area("Enter a message:")
if st.button("Detect Fraud"):
if user_input:
# Tokenize input
inputs = tokenizer(user_input, return_tensors="pt", truncation=True)
# Get model prediction
model.eval()
with torch.no_grad():
outputs = model(**inputs)
predicted_class = torch.argmax(outputs.logits).item()
# Display result
st.success(f"🚨 Prediction: **{id2label[predicted_class]}**")
else:
st.warning("Please enter a dialogue.")