Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import torch | |
import numpy as np | |
import diffusers | |
import os | |
import random | |
from PIL import Image | |
hf_token = os.environ.get("HF_TOKEN") | |
from diffusers import AutoPipelineForText2Image | |
device = "cuda" # if torch.cuda.is_available() else "cpu" | |
pipe = AutoPipelineForText2Image.from_pretrained("briaai/BRIA-2.3", torch_dtype=torch.float16, force_zeros_for_empty_prompt=False).to(device) | |
pipe.load_ip_adapter("briaai/Image-Prompt", subfolder='models', weight_name="ip_adapter_bria.bin") | |
pipe.to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
def predict(prompt, ip_adapter_images, ip_adapter_scale=0.5, negative_prompt="", seed=100, randomize_seed=False, center_crop=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=50, progress=gr.Progress(track_tqdm=True)): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
# Optionally resize images if center crop is not selected | |
if not center_crop: | |
ip_adapter_images = [image.resize((224, 224)) for image in ip_adapter_images] | |
# Create a generator for reproducible random seed | |
generator = torch.Generator(device="cuda").manual_seed(seed) | |
pipe.set_ip_adapter_scale([ip_adapter_scale]) | |
# Pass all images at once to the pipe | |
result_images = pipe( | |
prompt=prompt, | |
ip_adapter_image=ip_adapter_images, # Pass the list of images | |
negative_prompt=negative_prompt, | |
height=height, | |
width=width, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
num_images_per_prompt=1, | |
generator=generator, | |
).images | |
return result_images, seed | |
examples = [ | |
["high quality", ["example1.png", "example2.png"], 1.0, "", 1000, False, False, 1152, 896], | |
] | |
css = """ | |
#col-container { | |
display: flex; | |
flex-direction: column; | |
align-items: center; | |
padding: 10px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(): | |
with gr.Row(): | |
prompt = gr.Textbox(label="Prompt", lines=1) | |
ip_adapter_images = gr.Gallery(label="Input Images", elem_id="image-gallery").style(grid=[2], preview=True) | |
ip_adapter_scale = gr.Slider(label="IP Adapter Scale", minimum=0.0, maximum=1.0, step=0.1, value=0.5) | |
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Optional", lines=1) | |
with gr.Row(): | |
seed = gr.Number(label="Seed", value=100) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
center_crop = gr.Checkbox(label="Center Crop Image", value=False, info="If not checked, the images will be resized.") | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", minimum=0.0, maximum=10.0, step=0.1, value=7.0 | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of Inference Steps", minimum=1, maximum=100, step=1, value=25 | |
) | |
result = gr.Gallery(label="Generated Images").style(grid=[2], preview=True) | |
run_button = gr.Button("Run") | |
run_button.click( | |
predict, | |
inputs=[prompt, ip_adapter_images, ip_adapter_scale, negative_prompt, seed, randomize_seed, center_crop, width, height, guidance_scale, num_inference_steps], | |
outputs=[result, seed] | |
) | |
gr.Examples( | |
examples=examples, | |
fn=predict, | |
inputs=[prompt, ip_adapter_images, ip_adapter_scale, negative_prompt, seed, randomize_seed, center_crop, width, height], | |
outputs=[result, seed], | |
cache_examples="lazy" | |
) | |
demo.queue(max_size=25, api_open=False).launch(show_api=False) | |