Spaces:
Running
Running
yonishafir
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
import requests
|
4 |
+
from io import BytesIO
|
5 |
+
import torch
|
6 |
+
from torchvision import transforms
|
7 |
+
from diffusers import AutoencoderKL, LCMScheduler
|
8 |
+
from pipeline_controlnet_sd_xl import StableDiffusionXLControlNetPipeline
|
9 |
+
from controlnet import ControlNetModel
|
10 |
+
|
11 |
+
# Define helper functions
|
12 |
+
def download_image(url):
|
13 |
+
response = requests.get(url)
|
14 |
+
return Image.open(BytesIO(response.content)).convert("RGB")
|
15 |
+
|
16 |
+
def load_model():
|
17 |
+
# Load model components
|
18 |
+
controlnet = ControlNetModel().from_pretrained("briaai/DEV-ControlNetInpaintingFast", torch_dtype=torch.float16)
|
19 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
20 |
+
pipe = StableDiffusionXLControlNetPipeline.from_pretrained("briaai/BRIA-2.3", controlnet=controlnet.to(dtype=torch.float16), torch_dtype=torch.float16, vae=vae)
|
21 |
+
pipe.to('cuda')
|
22 |
+
return pipe
|
23 |
+
|
24 |
+
pipe = load_model()
|
25 |
+
|
26 |
+
# Define the inpainting function
|
27 |
+
def inpaint(image, mask):
|
28 |
+
# Process image and mask
|
29 |
+
image = image.resize((1024, 1024)).convert("RGB")
|
30 |
+
mask = mask.resize((1024, 1024)).convert("L")
|
31 |
+
|
32 |
+
# Transform to tensor
|
33 |
+
image_transform = transforms.ToTensor()
|
34 |
+
image_tensor = image_transform(image).unsqueeze(0).to('cuda')
|
35 |
+
mask_tensor = image_transform(mask).unsqueeze(0).to('cuda')
|
36 |
+
mask_tensor = (mask_tensor > 0.5).float() # binarize mask
|
37 |
+
|
38 |
+
# Generate image
|
39 |
+
with torch.no_grad():
|
40 |
+
result = pipe(prompt="A park bench", init_image=image_tensor, mask_image=mask_tensor, num_inference_steps=50).images[0]
|
41 |
+
|
42 |
+
return transforms.ToPILImage()(result.squeeze(0))
|
43 |
+
|
44 |
+
# Define the interface
|
45 |
+
interface = gr.Interface(fn=inpaint,
|
46 |
+
inputs=[gr.inputs.Image(type="pil", label="Original Image"), gr.inputs.Image(type="pil", label="Mask Image")],
|
47 |
+
outputs=gr.outputs.Image(type="pil", label="Inpainted Image"),
|
48 |
+
title="Stable Diffusion XL ControlNet Inpainting",
|
49 |
+
description="Upload an image and its corresponding mask to inpaint the specified area.")
|
50 |
+
|
51 |
+
if __name__ == "__main__":
|
52 |
+
interface.launch()
|