yonishafir commited on
Commit
6c74fa1
·
verified ·
1 Parent(s): 93d4b5e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +176 -50
app.py CHANGED
@@ -1,52 +1,178 @@
1
  import gradio as gr
2
- from PIL import Image
3
- import requests
4
- from io import BytesIO
5
  import torch
6
- from torchvision import transforms
7
- from diffusers import AutoencoderKL, LCMScheduler
8
- from pipeline_controlnet_sd_xl import StableDiffusionXLControlNetPipeline
9
- from controlnet import ControlNetModel
10
-
11
- # Define helper functions
12
- def download_image(url):
13
- response = requests.get(url)
14
- return Image.open(BytesIO(response.content)).convert("RGB")
15
-
16
- def load_model():
17
- # Load model components
18
- controlnet = ControlNetModel().from_pretrained("briaai/DEV-ControlNetInpaintingFast", torch_dtype=torch.float16)
19
- vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
20
- pipe = StableDiffusionXLControlNetPipeline.from_pretrained("briaai/BRIA-2.3", controlnet=controlnet.to(dtype=torch.float16), torch_dtype=torch.float16, vae=vae)
21
- pipe.to('cuda')
22
- return pipe
23
-
24
- pipe = load_model()
25
-
26
- # Define the inpainting function
27
- def inpaint(image, mask):
28
- # Process image and mask
29
- image = image.resize((1024, 1024)).convert("RGB")
30
- mask = mask.resize((1024, 1024)).convert("L")
31
-
32
- # Transform to tensor
33
- image_transform = transforms.ToTensor()
34
- image_tensor = image_transform(image).unsqueeze(0).to('cuda')
35
- mask_tensor = image_transform(mask).unsqueeze(0).to('cuda')
36
- mask_tensor = (mask_tensor > 0.5).float() # binarize mask
37
-
38
- # Generate image
39
- with torch.no_grad():
40
- result = pipe(prompt="A park bench", init_image=image_tensor, mask_image=mask_tensor, num_inference_steps=50).images[0]
41
-
42
- return transforms.ToPILImage()(result.squeeze(0))
43
-
44
- # Define the interface
45
- interface = gr.Interface(fn=inpaint,
46
- inputs=[gr.inputs.Image(type="pil", label="Original Image"), gr.inputs.Image(type="pil", label="Mask Image")],
47
- outputs=gr.outputs.Image(type="pil", label="Inpainted Image"),
48
- title="Stable Diffusion XL ControlNet Inpainting",
49
- description="Upload an image and its corresponding mask to inpaint the specified area.")
50
-
51
- if __name__ == "__main__":
52
- interface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
 
 
 
2
  import torch
3
+ import numpy as np
4
+ import diffusers
5
+ import os
6
+ from PIL import Image
7
+ hf_token = os.environ.get("HF_TOKEN")
8
+ from diffusers import StableDiffusionXLInpaintPipeline, DDIMScheduler, UNet2DConditionModel
9
+
10
+ ratios_map = {
11
+ 0.5:{"width":704,"height":1408},
12
+ 0.57:{"width":768,"height":1344},
13
+ 0.68:{"width":832,"height":1216},
14
+ 0.72:{"width":832,"height":1152},
15
+ 0.78:{"width":896,"height":1152},
16
+ 0.82:{"width":896,"height":1088},
17
+ 0.88:{"width":960,"height":1088},
18
+ 0.94:{"width":960,"height":1024},
19
+ 1.00:{"width":1024,"height":1024},
20
+ 1.13:{"width":1088,"height":960},
21
+ 1.21:{"width":1088,"height":896},
22
+ 1.29:{"width":1152,"height":896},
23
+ 1.38:{"width":1152,"height":832},
24
+ 1.46:{"width":1216,"height":832},
25
+ 1.67:{"width":1280,"height":768},
26
+ 1.75:{"width":1344,"height":768},
27
+ 2.00:{"width":1408,"height":704}
28
+ }
29
+ ratios = np.array(list(ratios_map.keys()))
30
+
31
+ def get_size(init_image):
32
+ w,h=init_image.size
33
+ curr_ratio = w/h
34
+ ind = np.argmin(np.abs(curr_ratio-ratios))
35
+ ratio = ratios[ind]
36
+ chosen_ratio = ratios_map[ratio]
37
+ w,h = chosen_ratio['width'], chosen_ratio['height']
38
+
39
+ return w,h
40
+
41
+ device = "cuda" if torch.cuda.is_available() else "cpu"
42
+
43
+ unet = UNet2DConditionModel.from_pretrained(
44
+ "briaai/BRIA-2.2-Inpainting",
45
+ subfolder="unet",
46
+ torch_dtype=torch.float16,
47
+ )
48
+
49
+ scheduler = DDIMScheduler.from_pretrained("briaai/BRIA-2.3", subfolder="scheduler",clip_sample=False)
50
+
51
+ pipe = StableDiffusionXLInpaintPipeline.from_pretrained(
52
+ "briaai/BRIA-2.3",
53
+ unet=unet,
54
+ scheduler=scheduler,
55
+ torch_dtype=torch.float16,
56
+ force_zeros_for_empty_prompt=False
57
+ )
58
+
59
+ pipe = pipe.to(device)
60
+ pipe.force_zeros_for_empty_prompt = False
61
+
62
+ default_negative_prompt= "" #"Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers"
63
+
64
+
65
+ def read_content(file_path: str) -> str:
66
+ """read the content of target file
67
+ """
68
+ with open(file_path, 'r', encoding='utf-8') as f:
69
+ content = f.read()
70
+
71
+ return content
72
+
73
+ def predict(dict, prompt="", negative_prompt="", guidance_scale=5, steps=30, strength=1.0):
74
+ if negative_prompt == "":
75
+ negative_prompt = None
76
+
77
+
78
+ init_image = dict["image"].convert("RGB")#.resize((1024, 1024))
79
+ mask = dict["mask"].convert("RGB")#.resize((1024, 1024))
80
+
81
+ w,h = get_size(init_image)
82
+
83
+ init_image = init_image.resize((w, h))
84
+ mask = mask.resize((w, h))
85
+
86
+ # Resize to nearest ratio ?
87
+
88
+ mask = np.array(mask)
89
+ mask[mask>0]=255
90
+ mask = Image.fromarray(mask)
91
+
92
+ output = pipe(prompt = prompt,width=w,height=h, negative_prompt=negative_prompt, image=init_image, mask_image=mask, guidance_scale=guidance_scale, num_inference_steps=int(steps), strength=strength)
93
+
94
+ return output.images[0] #, gr.update(visible=True)
95
+
96
+
97
+ css = '''
98
+ .gradio-container{max-width: 1100px !important}
99
+ #image_upload{min-height:400px}
100
+ #image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px}
101
+ #mask_radio .gr-form{background:transparent; border: none}
102
+ #word_mask{margin-top: .75em !important}
103
+ #word_mask textarea:disabled{opacity: 0.3}
104
+ .footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5}
105
+ .footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
106
+ .dark .footer {border-color: #303030}
107
+ .dark .footer>p {background: #0b0f19}
108
+ .acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%}
109
+ #image_upload .touch-none{display: flex}
110
+ @keyframes spin {
111
+ from {
112
+ transform: rotate(0deg);
113
+ }
114
+ to {
115
+ transform: rotate(360deg);
116
+ }
117
+ }
118
+ #share-btn-container {padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; max-width: 13rem; margin-left: auto;}
119
+ div#share-btn-container > div {flex-direction: row;background: black;align-items: center}
120
+ #share-btn-container:hover {background-color: #060606}
121
+ #share-btn {all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.5rem !important; padding-bottom: 0.5rem !important;right:0;}
122
+ #share-btn * {all: unset}
123
+ #share-btn-container div:nth-child(-n+2){width: auto !important;min-height: 0px !important;}
124
+ #share-btn-container .wrap {display: none !important}
125
+ #share-btn-container.hidden {display: none!important}
126
+ #prompt input{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;}
127
+ #run_button{position:absolute;margin-top: 11px;right: 0;margin-right: 0.8em;border-bottom-left-radius: 0px;
128
+ border-top-left-radius: 0px;}
129
+ #prompt-container{margin-top:-18px;}
130
+ #prompt-container .form{border-top-left-radius: 0;border-top-right-radius: 0}
131
+ #image_upload{border-bottom-left-radius: 0px;border-bottom-right-radius: 0px}
132
+ '''
133
+
134
+ image_blocks = gr.Blocks(css=css, elem_id="total-container")
135
+ with image_blocks as demo:
136
+ with gr.Column(elem_id="col-container"):
137
+ gr.Markdown("## BRIA 2.2")
138
+ gr.HTML('''
139
+ <p style="margin-bottom: 10px; font-size: 94%">
140
+ This is a demo for
141
+ <a href="https://huggingface.co/briaai/BRIA-2.2" target="_blank">BRIA 2.2 text-to-image </a>.
142
+ BRIA 2.2 improve the generation of humans and illustrations compared to BRIA 2.2 while still trained on licensed data, and so provide full legal liability coverage for copyright and privacy infringement.
143
+ </p>
144
+ ''')
145
+ with gr.Row():
146
+ with gr.Column():
147
+ image = gr.Image(sources=['upload'], tool='sketch', elem_id="image_upload", type="pil", label="Upload", height=400)
148
+ with gr.Row(elem_id="prompt-container", equal_height=True):
149
+ with gr.Row():
150
+ prompt = gr.Textbox(placeholder="Your prompt (what you want in place of what is erased)", show_label=False, elem_id="prompt")
151
+ btn = gr.Button("Inpaint!", elem_id="run_button")
152
+
153
+ with gr.Accordion(label="Advanced Settings", open=False):
154
+ with gr.Row(equal_height=True):
155
+ guidance_scale = gr.Number(value=5, minimum=1.0, maximum=10.0, step=0.5, label="guidance_scale")
156
+ steps = gr.Number(value=30, minimum=20, maximum=50, step=1, label="steps")
157
+ strength = gr.Number(value=1, minimum=0.01, maximum=1.0, step=0.01, label="strength")
158
+ negative_prompt = gr.Textbox(label="negative_prompt", value=default_negative_prompt, placeholder=default_negative_prompt, info="what you don't want to see in the image")
159
+
160
+
161
+ with gr.Column():
162
+ image_out = gr.Image(label="Output", elem_id="output-img", height=400)
163
+
164
+
165
+
166
+ btn.click(fn=predict, inputs=[image, prompt, negative_prompt, guidance_scale, steps, strength], outputs=[image_out], api_name='run')
167
+ prompt.submit(fn=predict, inputs=[image, prompt, negative_prompt, guidance_scale, steps, strength], outputs=[image_out])
168
+
169
+ gr.HTML(
170
+ """
171
+ <div class="footer">
172
+ <p>Model by <a href="https://huggingface.co/diffusers" style="text-decoration: underline;" target="_blank">Diffusers</a> - Gradio Demo by 🤗 Hugging Face
173
+ </p>
174
+ </div>
175
+ """
176
+ )
177
+
178
+ image_blocks.queue(max_size=25,api_open=False).launch(show_api=False)