dvir-bria commited on
Commit
63a0180
1 Parent(s): fb8ab9c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -10
app.py CHANGED
@@ -6,10 +6,6 @@ import numpy as np
6
  import cv2
7
  import gradio as gr
8
  from torchvision import transforms
9
- # from huggingface_hub import login
10
- # login()
11
-
12
- # controlnet_conditioning_scale = 1.0
13
 
14
  controlnet = ControlNetModel.from_pretrained(
15
  "briaai/ControlNet-Canny",
@@ -21,7 +17,7 @@ pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
21
  controlnet=controlnet,
22
  torch_dtype=torch.float16,
23
  )
24
- pipe.enable_model_cpu_offload()
25
 
26
  low_threshold = 100
27
  high_threshold = 200
@@ -47,14 +43,26 @@ def get_canny_filter(image):
47
  canny_image = Image.fromarray(image)
48
  return canny_image
49
 
50
- def process(input_image, prompt, num_steps, controlnet_conditioning_scale):
 
 
51
  # resize input_image to 1024x1024
52
  input_image = resize_image(input_image)
53
 
54
  canny_image = get_canny_filter(input_image)
55
- images = pipe(
56
- prompt,image=canny_image, num_inference_steps=num_steps, controlnet_conditioning_scale=float(controlnet_conditioning_scale),
57
- ).images
 
 
 
 
 
 
 
 
 
 
58
 
59
  return [canny_image,images[0]]
60
 
@@ -73,14 +81,16 @@ with block:
73
  with gr.Column():
74
  input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam
75
  prompt = gr.Textbox(label="Prompt")
 
76
  num_steps = gr.Slider(label="Number of steps", minimum=25, maximum=100, value=50, step=1)
77
  controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=2.0, value=1.0, step=0.05)
 
78
  run_button = gr.Button(value="Run")
79
 
80
 
81
  with gr.Column():
82
  result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=[2], height='auto')
83
- ips = [input_image, prompt, num_steps, controlnet_conditioning_scale]
84
  run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
85
 
86
  block.launch(debug = True)
 
6
  import cv2
7
  import gradio as gr
8
  from torchvision import transforms
 
 
 
 
9
 
10
  controlnet = ControlNetModel.from_pretrained(
11
  "briaai/ControlNet-Canny",
 
17
  controlnet=controlnet,
18
  torch_dtype=torch.float16,
19
  )
20
+ pipe.enable_xformers_memory_efficient_attention()
21
 
22
  low_threshold = 100
23
  high_threshold = 200
 
43
  canny_image = Image.fromarray(image)
44
  return canny_image
45
 
46
+ def process(input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed):
47
+ generator = torch.manual_seed(seed)
48
+
49
  # resize input_image to 1024x1024
50
  input_image = resize_image(input_image)
51
 
52
  canny_image = get_canny_filter(input_image)
53
+
54
+ pipe.enable_freeu(b1=1.1, b2=1.1, s1=0.5, s2=0.7)
55
+
56
+ if negative_prompt != '':
57
+ images = pipe(
58
+ prompt, negative_prompt=negative_prompt, image=canny_image, num_inference_steps=num_steps, controlnet_conditioning_scale=float(controlnet_conditioning_scale),
59
+ generator=generator,
60
+ ).images
61
+ else:
62
+ images = pipe(
63
+ prompt, force_zeros_for_empty_prompt=False, image=canny_image, num_inference_steps=num_steps, controlnet_conditioning_scale=float(controlnet_conditioning_scale),
64
+ generator=generator,
65
+ ).images
66
 
67
  return [canny_image,images[0]]
68
 
 
81
  with gr.Column():
82
  input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam
83
  prompt = gr.Textbox(label="Prompt")
84
+ negative_prompt = gr.Textbox(label="Negative prompt", value="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers")
85
  num_steps = gr.Slider(label="Number of steps", minimum=25, maximum=100, value=50, step=1)
86
  controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=2.0, value=1.0, step=0.05)
87
+ seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True,)
88
  run_button = gr.Button(value="Run")
89
 
90
 
91
  with gr.Column():
92
  result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=[2], height='auto')
93
+ ips = [input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed]
94
  run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
95
 
96
  block.launch(debug = True)