dvir-bria's picture
Update app_canny.py
6e8c022 verified
raw
history blame
6.58 kB
#!/usr/bin/env python
import gradio as gr
def create_demo(process):
with gr.Blocks() as demo:
gr.Markdown("## BRIA 2.2 ControlNet Canny")
gr.HTML('''
<p style="margin-bottom: 10px; font-size: 94%">
This is a demo for ControlNet Canny that using
<a href="https://huggingface.co/briaai/BRIA-2.2" target="_blank">BRIA 2.2 text-to-image model</a> as backbone.
Trained on licensed data, BRIA 2.2 provide full legal liability coverage for copyright and privacy infringement.
</p>
''')
with gr.Row():
with gr.Column():
input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam
prompt = gr.Textbox(label="Prompt")
negative_prompt = gr.Textbox(label="Negative prompt", value="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers")
num_steps = gr.Slider(label="Number of steps", minimum=25, maximum=100, value=50, step=1)
controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=2.0, value=1.0, step=0.05)
seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True,)
run_button = gr.Button(value="Run")
with gr.Column():
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=[2], height='auto')
ips = [input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed]
run_button.click(
fn=process,
inputs=inputs,
outputs=result,
api_name="canny",
)
return demo
if __name__ == "__main__":
from model import Model
model = Model(task_name="Canny")
demo = create_demo(model.process_canny)
demo.queue().launch()
################################################################################################################################
# from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL, EulerAncestralDiscreteScheduler
# from diffusers.utils import load_image
# from PIL import Image
# import torch
# import numpy as np
# import cv2
# import gradio as gr
# from torchvision import transforms
# controlnet = ControlNetModel.from_pretrained(
# "briaai/BRIA-2.2-ControlNet-Canny",
# torch_dtype=torch.float16
# ).to('cuda')
# pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
# "briaai/BRIA-2.2",
# controlnet=controlnet,
# torch_dtype=torch.float16,
# device_map='auto',
# low_cpu_mem_usage=True,
# offload_state_dict=True,
# ).to('cuda')
# pipe.scheduler = EulerAncestralDiscreteScheduler(
# beta_start=0.00085,
# beta_end=0.012,
# beta_schedule="scaled_linear",
# num_train_timesteps=1000,
# steps_offset=1
# )
# # pipe.enable_freeu(b1=1.1, b2=1.1, s1=0.5, s2=0.7)
# pipe.enable_xformers_memory_efficient_attention()
# pipe.force_zeros_for_empty_prompt = False
# low_threshold = 100
# high_threshold = 200
# def resize_image(image):
# image = image.convert('RGB')
# current_size = image.size
# if current_size[0] > current_size[1]:
# center_cropped_image = transforms.functional.center_crop(image, (current_size[1], current_size[1]))
# else:
# center_cropped_image = transforms.functional.center_crop(image, (current_size[0], current_size[0]))
# resized_image = transforms.functional.resize(center_cropped_image, (1024, 1024))
# return resized_image
# def get_canny_filter(image):
# if not isinstance(image, np.ndarray):
# image = np.array(image)
# image = cv2.Canny(image, low_threshold, high_threshold)
# image = image[:, :, None]
# image = np.concatenate([image, image, image], axis=2)
# canny_image = Image.fromarray(image)
# return canny_image
# def process(input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed):
# generator = torch.manual_seed(seed)
# # resize input_image to 1024x1024
# input_image = resize_image(input_image)
# canny_image = get_canny_filter(input_image)
# images = pipe(
# prompt, negative_prompt=negative_prompt, image=canny_image, num_inference_steps=num_steps, controlnet_conditioning_scale=float(controlnet_conditioning_scale),
# generator=generator,
# ).images
# return [canny_image,images[0]]
# block = gr.Blocks().queue()
# with block:
# gr.Markdown("## BRIA 2.2 ControlNet Canny")
# gr.HTML('''
# <p style="margin-bottom: 10px; font-size: 94%">
# This is a demo for ControlNet Canny that using
# <a href="https://huggingface.co/briaai/BRIA-2.2" target="_blank">BRIA 2.2 text-to-image model</a> as backbone.
# Trained on licensed data, BRIA 2.2 provide full legal liability coverage for copyright and privacy infringement.
# </p>
# ''')
# with gr.Row():
# with gr.Column():
# input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam
# prompt = gr.Textbox(label="Prompt")
# negative_prompt = gr.Textbox(label="Negative prompt", value="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers")
# num_steps = gr.Slider(label="Number of steps", minimum=25, maximum=100, value=50, step=1)
# controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=2.0, value=1.0, step=0.05)
# seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True,)
# run_button = gr.Button(value="Run")
# with gr.Column():
# result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=[2], height='auto')
# ips = [input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed]
# run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
# block.launch(debug = True)