brendabor's picture
Update app.py
15b99ac
raw
history blame
1.95 kB
import streamlit as st
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.metrics.pairwise import cosine_similarity
# Load your dataset
df1 = pd.read_csv('df1.csv')
df1 = df1.dropna()#drop null values
# Copy the content-based recommendation code
audio_features = df1[['danceability', 'energy', 'key', 'loudness', 'mode', 'speechiness',
'acousticness', 'instrumentalness', 'liveness', 'valence', 'tempo',
'duration_ms', 'time_signature']]
mood_cats = df1[['mood_cats']]
# Normalize audio features
scaler = StandardScaler()
audio_features_scaled = scaler.fit_transform(audio_features)
# Combine mood and audio features
combined_features = pd.concat([mood_cats, pd.DataFrame(audio_features_scaled)], axis=1)
# Calculate similarity matrix
similarity_matrix = cosine_similarity(combined_features)
def recommend_cont(song_index, num_recommendations=5):
song_similarity = similarity_matrix[song_index]
# Get indices and similarity scores of top similar songs
similar_songs = sorted(list(enumerate(song_similarity)), key=lambda x: x[1], reverse=True)[1:num_recommendations+1]
recommended_song_indices = [idx for idx, similarity in similar_songs]
recommended_songs = df1.iloc[recommended_song_indices].copy()
recommended_songs['score'] = [similarity for idx, similarity in similar_songs]
return recommended_songs
# Streamlit app
st.title('Content-Based Recommender System')
# Select a song index
selected_index = st.slider('Select a song index', 0, len(df1)-1, 0)
# Get recommendations
recommended_songs = recommend_cont(selected_index)
# Display recommended songs using st.write
st.subheader('Recommended Songs:')
for index in recommended_songs.index:
st.write(f"Song Index: {index}, Title: {recommended_songs.loc[index, 'track_name']}, Artist: {recommended_songs.loc[index, 'track_artist']}, Score: {recommended_songs.loc[index, 'score']}")