Spaces:
Running
Running
# coding: utf-8 | |
# Copyright (C) 2021, [Breezedeus](https://github.com/breezedeus). | |
# Licensed to the Apache Software Foundation (ASF) under one | |
# or more contributor license agreements. See the NOTICE file | |
# distributed with this work for additional information | |
# regarding copyright ownership. The ASF licenses this file | |
# to you under the Apache License, Version 2.0 (the | |
# "License"); you may not use this file except in compliance | |
# with the License. You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, | |
# software distributed under the License is distributed on an | |
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | |
# KIND, either express or implied. See the License for the | |
# specific language governing permissions and limitations | |
# under the License. | |
import os | |
from collections import OrderedDict | |
import cv2 | |
import numpy as np | |
from PIL import Image | |
import streamlit as st | |
from cnstd.utils import pil_to_numpy, imsave | |
from cnocr import CnOcr, DET_AVAILABLE_MODELS, REC_AVAILABLE_MODELS | |
from cnocr.utils import set_logger, draw_ocr_results, download | |
logger = set_logger() | |
st.set_page_config(layout="wide") | |
def plot_for_debugging(rotated_img, one_out, box_score_thresh, crop_ncols, prefix_fp): | |
import matplotlib.pyplot as plt | |
import math | |
rotated_img = rotated_img.copy() | |
crops = [info['cropped_img'] for info in one_out] | |
print('%d boxes are found' % len(crops)) | |
ncols = crop_ncols | |
nrows = math.ceil(len(crops) / ncols) | |
fig, ax = plt.subplots(nrows=nrows, ncols=ncols) | |
for i, axi in enumerate(ax.flat): | |
if i >= len(crops): | |
break | |
axi.imshow(crops[i]) | |
crop_fp = '%s-crops.png' % prefix_fp | |
plt.savefig(crop_fp) | |
print('cropped results are save to file %s' % crop_fp) | |
for info in one_out: | |
box, score = info.get('position'), info['score'] | |
if score < box_score_thresh: # score < 0.5 | |
continue | |
if box is not None: | |
box = box.astype(int).reshape(-1, 2) | |
cv2.polylines(rotated_img, [box], True, color=(255, 0, 0), thickness=2) | |
result_fp = '%s-result.png' % prefix_fp | |
imsave(rotated_img, result_fp, normalized=False) | |
print('boxes results are save to file %s' % result_fp) | |
def get_ocr_model(det_model_name, rec_model_name, det_more_configs): | |
det_model_name, det_model_backend = det_model_name | |
rec_model_name, rec_model_backend = rec_model_name | |
return CnOcr( | |
det_model_name=det_model_name, | |
det_model_backend=det_model_backend, | |
rec_model_name=rec_model_name, | |
rec_model_backend=rec_model_backend, | |
det_more_configs=det_more_configs, | |
) | |
def visualize_naive_result(img, det_model_name, std_out, box_score_thresh): | |
img = pil_to_numpy(img).transpose((1, 2, 0)).astype(np.uint8) | |
plot_for_debugging(img, std_out, box_score_thresh, 2, './streamlit-app') | |
st.subheader('Detection Result') | |
if det_model_name == 'default_det': | |
st.warning('⚠️ Warning: "default_det" 检测模型不返回文本框位置!') | |
cols = st.columns([1, 7, 1]) | |
cols[1].image('./streamlit-app-result.png') | |
st.subheader('Recognition Result') | |
cols = st.columns([1, 7, 1]) | |
cols[1].image('./streamlit-app-crops.png') | |
_visualize_ocr(std_out) | |
def _visualize_ocr(ocr_outs): | |
st.empty() | |
ocr_res = OrderedDict({'文本': []}) | |
ocr_res['得分'] = [] | |
for out in ocr_outs: | |
# cropped_img = out['cropped_img'] # 检测出的文本框 | |
ocr_res['得分'].append(out['score']) | |
ocr_res['文本'].append(out['text']) | |
st.table(ocr_res) | |
def visualize_result(img, ocr_outs): | |
out_draw_fp = './streamlit-app-det-result.png' | |
font_path = 'docs/fonts/simfang.ttf' | |
if not os.path.exists(font_path): | |
url = 'https://huggingface.co/datasets/breezedeus/cnocr-wx-qr-code/resolve/main/fonts/simfang.ttf' | |
os.makedirs(os.path.dirname(font_path), exist_ok=True) | |
download(url, path=font_path, overwrite=True) | |
draw_ocr_results(img, ocr_outs, out_draw_fp, font_path) | |
st.image(out_draw_fp) | |
def main(): | |
st.sidebar.header('模型设置') | |
det_models = list(DET_AVAILABLE_MODELS.all_models()) | |
det_models.append(('naive_det', 'onnx')) | |
det_models.sort() | |
det_model_name = st.sidebar.selectbox( | |
'选择检测模型', det_models, index=det_models.index(('ch_PP-OCRv3_det', 'onnx')) | |
) | |
all_models = list(REC_AVAILABLE_MODELS.all_models()) | |
all_models.sort() | |
idx = all_models.index(('densenet_lite_136-fc', 'onnx')) | |
rec_model_name = st.sidebar.selectbox('选择识别模型', all_models, index=idx) | |
st.sidebar.subheader('检测参数') | |
rotated_bbox = st.sidebar.checkbox('是否检测带角度文本框', value=True) | |
use_angle_clf = st.sidebar.checkbox('是否使用角度预测模型校正文本框', value=False) | |
new_size = st.sidebar.slider( | |
'resize 后图片(长边)大小', min_value=124, max_value=4096, value=768 | |
) | |
box_score_thresh = st.sidebar.slider( | |
'得分阈值(低于阈值的结果会被过滤掉)', min_value=0.05, max_value=0.95, value=0.3 | |
) | |
min_box_size = st.sidebar.slider( | |
'框大小阈值(更小的文本框会被过滤掉)', min_value=4, max_value=50, value=10 | |
) | |
# std = get_std_model(det_model_name, rotated_bbox, use_angle_clf) | |
# st.sidebar.markdown("""---""") | |
# st.sidebar.header('CnOcr 设置') | |
det_more_configs = dict(rotated_bbox=rotated_bbox, use_angle_clf=use_angle_clf) | |
ocr = get_ocr_model(det_model_name, rec_model_name, det_more_configs) | |
st.markdown('# 开源Python OCR工具 ' '[CnOCR](https://github.com/breezedeus/cnocr)') | |
st.markdown('> 详细说明参见:[CnOCR 文档](https://cnocr.readthedocs.io/) ;' | |
'欢迎加入 [交流群](https://www.breezedeus.com/join-group) ;' | |
'作者:[breezedeus](https://www.breezedeus.com), [Github](https://github.com/breezedeus) 。') | |
st.markdown('') | |
st.subheader('选择待检测图片') | |
content_file = st.file_uploader('', type=["png", "jpg", "jpeg", "webp"]) | |
if content_file is None: | |
st.stop() | |
try: | |
img = Image.open(content_file).convert('RGB') | |
ocr_out = ocr.ocr( | |
img, | |
return_cropped_image=True, | |
resized_shape=new_size, | |
preserve_aspect_ratio=True, | |
box_score_thresh=box_score_thresh, | |
min_box_size=min_box_size, | |
) | |
if det_model_name[0] == 'naive_det': | |
visualize_naive_result(img, det_model_name[0], ocr_out, box_score_thresh) | |
else: | |
visualize_result(img, ocr_out) | |
except Exception as e: | |
st.error(e) | |
if __name__ == '__main__': | |
main() | |