CnOCR-Demo / streamlit_app.py
breezedeus's picture
transfer from streamlit to gradio
66658a5
raw
history blame
6.87 kB
# coding: utf-8
# Copyright (C) 2021, [Breezedeus](https://github.com/breezedeus).
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import os
from collections import OrderedDict
import cv2
import numpy as np
from PIL import Image
import streamlit as st
from cnstd.utils import pil_to_numpy, imsave
from cnocr import CnOcr, DET_AVAILABLE_MODELS, REC_AVAILABLE_MODELS
from cnocr.utils import set_logger, draw_ocr_results, download
logger = set_logger()
st.set_page_config(layout="wide")
def plot_for_debugging(rotated_img, one_out, box_score_thresh, crop_ncols, prefix_fp):
import matplotlib.pyplot as plt
import math
rotated_img = rotated_img.copy()
crops = [info['cropped_img'] for info in one_out]
print('%d boxes are found' % len(crops))
ncols = crop_ncols
nrows = math.ceil(len(crops) / ncols)
fig, ax = plt.subplots(nrows=nrows, ncols=ncols)
for i, axi in enumerate(ax.flat):
if i >= len(crops):
break
axi.imshow(crops[i])
crop_fp = '%s-crops.png' % prefix_fp
plt.savefig(crop_fp)
print('cropped results are save to file %s' % crop_fp)
for info in one_out:
box, score = info.get('position'), info['score']
if score < box_score_thresh: # score < 0.5
continue
if box is not None:
box = box.astype(int).reshape(-1, 2)
cv2.polylines(rotated_img, [box], True, color=(255, 0, 0), thickness=2)
result_fp = '%s-result.png' % prefix_fp
imsave(rotated_img, result_fp, normalized=False)
print('boxes results are save to file %s' % result_fp)
@st.cache_resource
def get_ocr_model(det_model_name, rec_model_name, det_more_configs):
det_model_name, det_model_backend = det_model_name
rec_model_name, rec_model_backend = rec_model_name
return CnOcr(
det_model_name=det_model_name,
det_model_backend=det_model_backend,
rec_model_name=rec_model_name,
rec_model_backend=rec_model_backend,
det_more_configs=det_more_configs,
)
def visualize_naive_result(img, det_model_name, std_out, box_score_thresh):
img = pil_to_numpy(img).transpose((1, 2, 0)).astype(np.uint8)
plot_for_debugging(img, std_out, box_score_thresh, 2, './streamlit-app')
st.subheader('Detection Result')
if det_model_name == 'default_det':
st.warning('⚠️ Warning: "default_det" 检测模型不返回文本框位置!')
cols = st.columns([1, 7, 1])
cols[1].image('./streamlit-app-result.png')
st.subheader('Recognition Result')
cols = st.columns([1, 7, 1])
cols[1].image('./streamlit-app-crops.png')
_visualize_ocr(std_out)
def _visualize_ocr(ocr_outs):
st.empty()
ocr_res = OrderedDict({'文本': []})
ocr_res['得分'] = []
for out in ocr_outs:
# cropped_img = out['cropped_img'] # 检测出的文本框
ocr_res['得分'].append(out['score'])
ocr_res['文本'].append(out['text'])
st.table(ocr_res)
def visualize_result(img, ocr_outs):
out_draw_fp = './streamlit-app-det-result.png'
font_path = 'docs/fonts/simfang.ttf'
if not os.path.exists(font_path):
url = 'https://huggingface.co/datasets/breezedeus/cnocr-wx-qr-code/resolve/main/fonts/simfang.ttf'
os.makedirs(os.path.dirname(font_path), exist_ok=True)
download(url, path=font_path, overwrite=True)
draw_ocr_results(img, ocr_outs, out_draw_fp, font_path)
st.image(out_draw_fp)
def main():
st.sidebar.header('模型设置')
det_models = list(DET_AVAILABLE_MODELS.all_models())
det_models.append(('naive_det', 'onnx'))
det_models.sort()
det_model_name = st.sidebar.selectbox(
'选择检测模型', det_models, index=det_models.index(('ch_PP-OCRv3_det', 'onnx'))
)
all_models = list(REC_AVAILABLE_MODELS.all_models())
all_models.sort()
idx = all_models.index(('densenet_lite_136-fc', 'onnx'))
rec_model_name = st.sidebar.selectbox('选择识别模型', all_models, index=idx)
st.sidebar.subheader('检测参数')
rotated_bbox = st.sidebar.checkbox('是否检测带角度文本框', value=True)
use_angle_clf = st.sidebar.checkbox('是否使用角度预测模型校正文本框', value=False)
new_size = st.sidebar.slider(
'resize 后图片(长边)大小', min_value=124, max_value=4096, value=768
)
box_score_thresh = st.sidebar.slider(
'得分阈值(低于阈值的结果会被过滤掉)', min_value=0.05, max_value=0.95, value=0.3
)
min_box_size = st.sidebar.slider(
'框大小阈值(更小的文本框会被过滤掉)', min_value=4, max_value=50, value=10
)
# std = get_std_model(det_model_name, rotated_bbox, use_angle_clf)
# st.sidebar.markdown("""---""")
# st.sidebar.header('CnOcr 设置')
det_more_configs = dict(rotated_bbox=rotated_bbox, use_angle_clf=use_angle_clf)
ocr = get_ocr_model(det_model_name, rec_model_name, det_more_configs)
st.markdown('# 开源Python OCR工具 ' '[CnOCR](https://github.com/breezedeus/cnocr)')
st.markdown('> 详细说明参见:[CnOCR 文档](https://cnocr.readthedocs.io/) ;'
'欢迎加入 [交流群](https://www.breezedeus.com/join-group) ;'
'作者:[breezedeus](https://www.breezedeus.com), [Github](https://github.com/breezedeus) 。')
st.markdown('')
st.subheader('选择待检测图片')
content_file = st.file_uploader('', type=["png", "jpg", "jpeg", "webp"])
if content_file is None:
st.stop()
try:
img = Image.open(content_file).convert('RGB')
ocr_out = ocr.ocr(
img,
return_cropped_image=True,
resized_shape=new_size,
preserve_aspect_ratio=True,
box_score_thresh=box_score_thresh,
min_box_size=min_box_size,
)
if det_model_name[0] == 'naive_det':
visualize_naive_result(img, det_model_name[0], ocr_out, box_score_thresh)
else:
visualize_result(img, ocr_out)
except Exception as e:
st.error(e)
if __name__ == '__main__':
main()