Spaces:
Build error
Build error
Upload 2 files
Browse files- app.py +230 -0
- requirements.txt +6 -0
app.py
ADDED
|
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
from sklearn.linear_model import LinearRegression
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from sklearn.model_selection import train_test_split
|
| 5 |
+
from sklearn.ensemble import AdaBoostRegressor, ExtraTreesRegressor
|
| 6 |
+
import pandas as pd
|
| 7 |
+
from sklearn.tree import DecisionTreeRegressor, ExtraTreeRegressor
|
| 8 |
+
from xgboost import XGBRegressor
|
| 9 |
+
from sklearn.metrics import r2_score
|
| 10 |
+
from catboost import CatBoostRegressor
|
| 11 |
+
from sklearn.ensemble import RandomForestRegressor
|
| 12 |
+
from sklearn.metrics import r2_score
|
| 13 |
+
import random
|
| 14 |
+
|
| 15 |
+
logger = gr.SimpleCSVLogger()
|
| 16 |
+
|
| 17 |
+
# set all random seeds to 42
|
| 18 |
+
random.seed(42)
|
| 19 |
+
np.random.seed(42)
|
| 20 |
+
|
| 21 |
+
def AdaBoostRegressorR2(x_file_obj,y_file_obj,learning_rate, n_estimators, loss, base_estimator, test_size,random_seed):
|
| 22 |
+
|
| 23 |
+
if base_estimator == "DecisionTreeRegressor":
|
| 24 |
+
base_estimator = DecisionTreeRegressor()
|
| 25 |
+
elif base_estimator == "XGBoost":
|
| 26 |
+
base_estimator = XGBRegressor()
|
| 27 |
+
elif base_estimator == "RandomForestRegressor":
|
| 28 |
+
base_estimator = RandomForestRegressor()
|
| 29 |
+
elif base_estimator == "CatBoostRegressor":
|
| 30 |
+
base_estimator = CatBoostRegressor()
|
| 31 |
+
elif base_estimator == "LinearRegression":
|
| 32 |
+
base_estimator = LinearRegression()
|
| 33 |
+
elif base_estimator == "ExtraTreeRegressor":
|
| 34 |
+
base_estimator = ExtraTreeRegressor()
|
| 35 |
+
elif base_estimator == "None":
|
| 36 |
+
base_estimator = None
|
| 37 |
+
|
| 38 |
+
X = pd.read_csv(x_file_obj.name,dtype=str)
|
| 39 |
+
y = pd.read_csv(y_file_obj.name,dtype=str)
|
| 40 |
+
y = y.values.ravel()
|
| 41 |
+
|
| 42 |
+
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=random_seed)
|
| 43 |
+
model = AdaBoostRegressor(learning_rate=learning_rate, n_estimators=n_estimators, loss=loss,base_estimator=base_estimator,random_state=random_seed)
|
| 44 |
+
model.fit(x_train, y_train)
|
| 45 |
+
predictions = model.predict(x_test)
|
| 46 |
+
return r2_score(y_test, predictions)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
adaInterface = gr.Interface(
|
| 51 |
+
AdaBoostRegressorR2,
|
| 52 |
+
[
|
| 53 |
+
gr.components.File(label="X File (CSV)"),
|
| 54 |
+
gr.components.File(label="Y File (CSV)"),
|
| 55 |
+
gr.components.Slider(0.1, 1, default=0.1, label="learning_rate"),
|
| 56 |
+
gr.components.Slider(0, 1000, default=10, label="n_estimators"),
|
| 57 |
+
gr.components.Dropdown(["linear", "square", "exponential"], label="loss"),
|
| 58 |
+
gr.components.Dropdown(["DecisionTreeRegressor","XGBoost","RandomForestRegressor","CatBoostRegressor","LinearRegression","ExtraTreeRegressor","None"], label="base_estimator"),
|
| 59 |
+
gr.components.Slider(0.1, 0.9, default=0.2, label="test_size"),
|
| 60 |
+
gr.components.Slider(0, 100, default=42, label="random_seed")
|
| 61 |
+
],
|
| 62 |
+
outputs="number",
|
| 63 |
+
title="AdaBoostRegressor",
|
| 64 |
+
description="Treino de um modelo de regressão com AdaBoostRegressor",
|
| 65 |
+
allow_flagging="manual"
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def CatBoostRegressorR2(x_file_obj,y_file_obj,learning_rate, n_estimators, loss, max_depth, max_bin, l2_leaf_reg, test_size,random_seed):
|
| 70 |
+
|
| 71 |
+
X = pd.read_csv(x_file_obj.name,dtype=str)
|
| 72 |
+
y = pd.read_csv(y_file_obj.name,dtype=str)
|
| 73 |
+
y = y.values.ravel()
|
| 74 |
+
|
| 75 |
+
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=random_seed)
|
| 76 |
+
model = CatBoostRegressor(learning_rate=learning_rate, n_estimators=n_estimators, loss_function=loss,max_depth=max_depth,
|
| 77 |
+
max_bin=max_bin,l2_leaf_reg=l2_leaf_reg ,random_state=random_seed)
|
| 78 |
+
model.fit(x_train, y_train)
|
| 79 |
+
predictions = model.predict(x_test)
|
| 80 |
+
return r2_score(y_test, predictions)
|
| 81 |
+
|
| 82 |
+
catInterface = gr.Interface(
|
| 83 |
+
CatBoostRegressorR2,
|
| 84 |
+
[
|
| 85 |
+
gr.components.File(label="X File (CSV)"),
|
| 86 |
+
gr.components.File(label="Y File (CSV)"),
|
| 87 |
+
gr.components.Slider(0.1, 1, default=0.1, label="learning_rate"),
|
| 88 |
+
gr.components.Slider(0, 1000, default=10, label="n_estimators"),
|
| 89 |
+
gr.components.Dropdown(["RMSE", "MAE", "Quantile:alpha=0.9", "LogLinQuantile:alpha=0.9", "Poisson", "MAPE", "MultiRMSE","Quantile", "LogLinQuantile", "Lq:q=1", "Lq:q=2"], label="loss"),
|
| 90 |
+
gr.components.Slider(0, 100, default=1, label="max_depth"),
|
| 91 |
+
gr.components.Slider(1, 255, default=255, label="max_bin"),
|
| 92 |
+
gr.components.Slider(0, 100, default=3, label="l2_leaf_reg"),
|
| 93 |
+
gr.components.Slider(0.1, 0.9, default=0.2, label="test_size"),
|
| 94 |
+
gr.components.Slider(0, 100, default=42, label="random_seed")
|
| 95 |
+
],
|
| 96 |
+
outputs="number",
|
| 97 |
+
title="CatBoostRegressor",
|
| 98 |
+
description="Treino de um modelo de regressão com CatBoostRegressor",
|
| 99 |
+
allow_flagging="manual"
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def RandomForestRegressorR2(x_file_obj,y_file_obj,n_estimators,
|
| 104 |
+
criterion, max_depth,min_samples_split,
|
| 105 |
+
min_samples_leaf,min_weight_fraction_leaf,max_features,max_leaf_nodes,min_impurity_decrease,bootstrap,n_jobs,test_size,random_seed):
|
| 106 |
+
|
| 107 |
+
max_depth = int(max_depth)
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
X = pd.read_csv(x_file_obj.name,dtype=str)
|
| 111 |
+
y = pd.read_csv(y_file_obj.name,dtype=str)
|
| 112 |
+
y = y.values.ravel()
|
| 113 |
+
|
| 114 |
+
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=random_seed)
|
| 115 |
+
model = RandomForestRegressor(n_estimators=n_estimators, criterion=criterion, max_depth=max_depth,
|
| 116 |
+
min_samples_split=min_samples_split,min_samples_leaf=min_samples_leaf,
|
| 117 |
+
min_weight_fraction_leaf=min_weight_fraction_leaf,max_features=max_features,max_leaf_nodes=max_leaf_nodes,
|
| 118 |
+
min_impurity_decrease=min_impurity_decrease,bootstrap=bootstrap,n_jobs=n_jobs,random_state=random_seed)
|
| 119 |
+
model.fit(x_train, y_train)
|
| 120 |
+
predictions = model.predict(x_test)
|
| 121 |
+
return r2_score(y_test, predictions)
|
| 122 |
+
|
| 123 |
+
randomForestInterface = gr.Interface(
|
| 124 |
+
RandomForestRegressorR2,
|
| 125 |
+
[
|
| 126 |
+
gr.components.File(label="X File (CSV)"),
|
| 127 |
+
gr.components.File(label="Y File (CSV)"),
|
| 128 |
+
gr.components.Slider(0, 1000, default=10, label="n_estimators"),
|
| 129 |
+
gr.components.Dropdown(["mse", "mae","poisson"], label="criterion",default="mse"),
|
| 130 |
+
gr.components.Slider(0, 100, default=1, label="max_depth"),
|
| 131 |
+
gr.components.Slider(0, 100, default=1, label="min_samples_split"),
|
| 132 |
+
gr.components.Slider(0, 100, default=1, label="min_samples_leaf"),
|
| 133 |
+
gr.components.Slider(0, 0.5, default=0, label="min_weight_fraction_leaf"),
|
| 134 |
+
gr.components.Dropdown(["auto", "sqrt", "log2"], label="max_features",default="auto"),
|
| 135 |
+
gr.components.Slider(0, 100, default=1, label="max_leaf_nodes"),
|
| 136 |
+
gr.components.Slider(0, 1, default=0, label="min_impurity_decrease"),
|
| 137 |
+
gr.components.Dropdown(["True", "False"], label="bootstrap",default="True"),
|
| 138 |
+
gr.components.Dropdown([i for i in range(-1,5,1)], default=-1, label="n_jobs"),
|
| 139 |
+
gr.components.Slider(0.1, 0.9, default=0.2, label="test_size"),
|
| 140 |
+
gr.components.Slider(0, 100, default=42, label="random_seed")
|
| 141 |
+
|
| 142 |
+
],
|
| 143 |
+
outputs="number",
|
| 144 |
+
title="RandomForestRegressor",
|
| 145 |
+
description="Treino de um modelo de regressão com RandomForestRegressor",
|
| 146 |
+
allow_flagging="manual"
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
# TODO - Add more parameters EXTRA TREE
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
def ExtraTreesRegressorR2(x_file_obj,y_file_obj,n_estimators,
|
| 153 |
+
criterion, max_depth,min_samples_split,
|
| 154 |
+
min_samples_leaf,min_weight_fraction_leaf,max_features,max_leaf_nodes,min_impurity_decrease,bootstrap,n_jobs,test_size,random_seed):
|
| 155 |
+
|
| 156 |
+
max_depth = int(max_depth)
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
X = pd.read_csv(x_file_obj.name,dtype=str)
|
| 160 |
+
y = pd.read_csv(y_file_obj.name,dtype=str)
|
| 161 |
+
y = y.values.ravel()
|
| 162 |
+
|
| 163 |
+
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=random_seed)
|
| 164 |
+
model = ExtraTreesRegressor(n_estimators=n_estimators, criterion=criterion, max_depth=max_depth,
|
| 165 |
+
min_samples_split=min_samples_split,min_samples_leaf=min_samples_leaf,
|
| 166 |
+
min_weight_fraction_leaf=min_weight_fraction_leaf,max_features=max_features,max_leaf_nodes=max_leaf_nodes,
|
| 167 |
+
min_impurity_decrease=min_impurity_decrease,bootstrap=bootstrap,n_jobs=n_jobs,random_state=random_seed)
|
| 168 |
+
model.fit(x_train, y_train)
|
| 169 |
+
predictions = model.predict(x_test)
|
| 170 |
+
return r2_score(y_test, predictions)
|
| 171 |
+
|
| 172 |
+
extraTreesInterface = gr.Interface(
|
| 173 |
+
ExtraTreesRegressorR2,
|
| 174 |
+
[
|
| 175 |
+
gr.components.File(label="X File (CSV)"),
|
| 176 |
+
gr.components.File(label="Y File (CSV)"),
|
| 177 |
+
gr.components.Slider(0, 1000, default=10, label="n_estimators"),
|
| 178 |
+
gr.components.Dropdown(["mse", "mae","poisson"], label="criterion",default="mse"),
|
| 179 |
+
gr.components.Slider(0, 100, default=1, label="max_depth"),
|
| 180 |
+
gr.components.Slider(0, 100, default=1, label="min_samples_split"),
|
| 181 |
+
gr.components.Slider(0, 100, default=1, label="min_samples_leaf"),
|
| 182 |
+
gr.components.Slider(0, 0.5, default=0, label="min_weight_fraction_leaf"),
|
| 183 |
+
gr.components.Dropdown(["auto", "sqrt", "log2"], label="max_features",default="auto"),
|
| 184 |
+
gr.components.Slider(0, 100, default=1, label="max_leaf_nodes"),
|
| 185 |
+
gr.components.Slider(0, 1, default=0, label="min_impurity_decrease"),
|
| 186 |
+
gr.components.Dropdown(["True", "False"], label="bootstrap",default="True"),
|
| 187 |
+
gr.components.Dropdown([i for i in range(-1,5,1)], default=-1, label="n_jobs"),
|
| 188 |
+
gr.components.Slider(0.1, 0.9, default=0.2, label="test_size"),
|
| 189 |
+
gr.components.Slider(0, 100, default=42, label="random_seed")
|
| 190 |
+
],
|
| 191 |
+
outputs="number",
|
| 192 |
+
title="ExtraTreesRegressor",
|
| 193 |
+
description="Treino de um modelo de regressão com ExtraTreesRegressor",
|
| 194 |
+
allow_flagging="manual"
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
def linearRegressionR2(x_file_obj,y_file_obj,fit_intercept, normalize, copy_X):
|
| 198 |
+
|
| 199 |
+
X = pd.read_csv(x_file_obj.name,dtype=str)
|
| 200 |
+
y = pd.read_csv(y_file_obj.name,dtype=str)
|
| 201 |
+
y = y.values.ravel()
|
| 202 |
+
|
| 203 |
+
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
|
| 204 |
+
model = LinearRegression(fit_intercept=fit_intercept, normalize=normalize, copy_X=copy_X)
|
| 205 |
+
model.fit(x_train, y_train)
|
| 206 |
+
predictions = model.predict(x_test)
|
| 207 |
+
return r2_score(y_test, predictions)
|
| 208 |
+
|
| 209 |
+
linearRegressionInterface = gr.Interface(
|
| 210 |
+
linearRegressionR2,
|
| 211 |
+
[
|
| 212 |
+
gr.components.File(label="X File (CSV)"),
|
| 213 |
+
gr.components.File(label="Y File (CSV)"),
|
| 214 |
+
gr.components.Checkbox(True, label="fit_intercept"),
|
| 215 |
+
gr.components.Checkbox(False, label="normalize"),
|
| 216 |
+
gr.components.Checkbox(True, label="copy_X"),
|
| 217 |
+
|
| 218 |
+
],
|
| 219 |
+
outputs="number",
|
| 220 |
+
title="LinearRegression",
|
| 221 |
+
description="Treino de um modelo de regressão com LinearRegression",
|
| 222 |
+
allow_flagging="manual")
|
| 223 |
+
|
| 224 |
+
iface = gr.TabbedInterface([catInterface, adaInterface, randomForestInterface, extraTreesInterface, linearRegressionInterface],
|
| 225 |
+
["CatBoostRegressor", "AdaBoostRegresssor","RandomForestRegressor", "ExtraTreesRegressor","LinearRegression"],theme="dark")
|
| 226 |
+
iface.launch(share=True, show_error=True)
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
catboost==1.1
|
| 2 |
+
gradio==3.15.0
|
| 3 |
+
numpy==1.21.6
|
| 4 |
+
pandas==1.4.2
|
| 5 |
+
scikit_learn==1.2.0
|
| 6 |
+
xgboost==1.6.2
|