brayden-gg
imprived speed of mdn sampling
3d3e7ab
raw
history blame
8.98 kB
import torch
import argparse
import numpy as np
from helper import *
from config.GlobalVariables import *
from SynthesisNetwork import SynthesisNetwork
from DataLoader import DataLoader
import convenience
import gradio as gr
#@title Demo
device = 'cpu'
num_samples = 10
net = SynthesisNetwork(weight_dim=256, num_layers=3).to(device)
if not torch.cuda.is_available():
net.load_state_dict(torch.load('./model/250000.pt', map_location=torch.device(device))["model_state_dict"])
dl = DataLoader(num_writer=1, num_samples=10, divider=5.0, datadir='./data/writers')
writer_options = [5, 14, 15, 16, 17, 22, 25, 80, 120, 137, 147, 151]
all_loaded_data = []
avail_char = "0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R S T U V W X Y Z ! ? \" ' * + - = : ; , . < > \ / [ ] ( ) # $ % &"
avail_char_list = avail_char.split(" ")
for writer_id in [120, 80]:
loaded_data = dl.next_batch(TYPE='TRAIN', uid=writer_id, tids=list(range(num_samples)))
all_loaded_data.append(loaded_data)
default_loaded_data = all_loaded_data[-1]
mdn_words = []
mdn_mean_Ws = []
all_word_mdn_Ws = []
all_word_mdn_Cs = []
# data for writer interpolation
writer_words = []
writer_mean_Ws = []
all_word_writer_Ws = []
all_word_writer_Cs = []
weight = 0.7
def update_target_word(target_word):
writer_words.clear()
for word in target_word.split(" "):
writer_words.append(word)
writer_mean_Ws.clear()
for loaded_data in all_loaded_data:
mean_global_W = convenience.get_mean_global_W(net, loaded_data, device)
writer_mean_Ws.append(mean_global_W)
all_word_writer_Ws.clear()
all_word_writer_Cs.clear()
for word in writer_words:
all_writer_Ws, all_writer_Cs = convenience.get_DSD(net, word, writer_mean_Ws, all_loaded_data, device)
all_word_writer_Ws.append(all_writer_Ws)
all_word_writer_Cs.append(all_writer_Cs)
return update_writer_slider(weight)
# for writer interpolation
def update_writer_slider(val):
global weight
weight = val
net.clamp_mdn = 0
im = convenience.draw_words(writer_words, all_word_writer_Ws, all_word_writer_Cs, [1 - weight, weight], net)
return im.convert("RGB")
def update_chosen_writers(writer1, writer2):
net.clamp_mdn = 0
id1, id2 = int(writer1.split(" ")[1]), int(writer2.split(" ")[1])
all_loaded_data.clear()
for writer_id in [id1, id2]:
loaded_data = dl.next_batch(TYPE='TRAIN', uid=writer_id, tids=list(range(num_samples)))
all_loaded_data.append(loaded_data)
return gr.Slider.update(label=f"{writer1} vs. {writer2}"), update_writer_slider(weight)
# for character blend
def interpolate_chars(c1, c2, weight):
"""Generates an image of handwritten text based on target_sentence"""
net.clamp_mdn = 0
letters = [c1, c2]
character_weights = [1 - weight, weight]
M = len(letters)
mean_global_W = convenience.get_mean_global_W(net, all_loaded_data[0], device)
all_Cs = torch.zeros(1, M, convenience.L, convenience.L)
for i in range(M): # get corners of grid
W_vector, char_matrix = convenience.get_DSD(net, letters[i], [mean_global_W], [default_loaded_data], device)
all_Cs[:, i, :, :] = char_matrix
all_Ws = mean_global_W.reshape(1, 1, convenience.L)
all_W_c = convenience.get_character_blend_W_c(character_weights, all_Ws, all_Cs)
all_commands = convenience.get_commands(net, letters[0], all_W_c)
width = 60
x_offset = 325
im = Image.fromarray(np.zeros([160, 750]))
dr = ImageDraw.Draw(im)
for [x, y, t] in all_commands:
if t == 0:
dr.line((
px + width/2 + x_offset,
py - width/2, # letters are shifted down for some reason
x + width/2 + + x_offset,
y - width/2), 255, 1)
px, py = x, y
return im.convert("RGB")
def choose_blend_chars(c1, c2):
return gr.Slider.update(label=f"'{c1}' vs. '{c2}'")
# for MDN
def update_mdn_word(target_word):
mdn_words.clear()
for word in target_word.split(" "):
mdn_words.append(word)
mdn_mean_Ws.clear()
mean_global_W = convenience.get_mean_global_W(net, default_loaded_data, device)
mdn_mean_Ws.append(mean_global_W)
all_word_mdn_Ws.clear()
all_word_mdn_Cs.clear()
for word in mdn_words:
all_writer_Ws, all_writer_Cs = convenience.get_DSD(net, word, mdn_mean_Ws, [default_loaded_data], device)
all_word_mdn_Ws.append(all_writer_Ws)
all_word_mdn_Cs.append(all_writer_Cs)
return sample_mdn(net.scale_sd, net.clamp_mdn)
def sample_mdn(maxs, maxr):
net.clamp_mdn = maxr
net.scale_sd = maxs
im = convenience.draw_words(mdn_words, all_word_mdn_Ws, all_word_mdn_Cs, [1], net)
return im.convert("RGB")
update_target_word("hello world")
update_mdn_word("hello world")
with gr.Blocks() as demo:
with gr.Tabs():
with gr.TabItem("Blend Writers"):
target_word = gr.Textbox(label="Target Word", value="hello world", max_lines=1)
with gr.Row():
left_ratio_options = ["Style " + str(id) for i, id in enumerate(writer_options) if i % 2 == 0]
right_ratio_options = ["Style " + str(id) for i, id in enumerate(writer_options) if i % 2 == 1]
with gr.Column():
writer1 = gr.Radio(left_ratio_options, value="Style 120", label="Style for first writer")
with gr.Column():
writer2 = gr.Radio(right_ratio_options, value="Style 80", label="Style for second writer")
with gr.Row():
writer_slider = gr.Slider(0, 1, value=0.7, label="Style 120 vs. Style 80")
with gr.Row():
writer_submit = gr.Button("Submit")
with gr.Row():
writer_default_image = convenience.sample_blended_writers([0.3, 0.7], "hello world", net, all_loaded_data, device).convert("RGB")
writer_output = gr.Image(writer_default_image)
writer_submit.click(fn=update_writer_slider, inputs=[writer_slider], outputs=[writer_output])
writer_slider.change(fn=update_writer_slider, inputs=[writer_slider], outputs=[writer_output])
target_word.submit(fn=update_target_word, inputs=[target_word], outputs=[writer_output])
writer1.change(fn=update_chosen_writers, inputs=[writer1, writer2], outputs=[writer_slider, writer_output])
writer2.change(fn=update_chosen_writers, inputs=[writer1, writer2], outputs=[writer_slider, writer_output])
with gr.TabItem("Blend Characters"):
with gr.Row():
with gr.Column():
char1 = gr.Dropdown(choices=avail_char_list, value="y", label="Character 1")
with gr.Column():
char2 = gr.Dropdown(choices=avail_char_list, value="s", label="Character 2")
with gr.Row():
char_slider = gr.Slider(0, 1, value=0.7, label="'y' vs. 's'")
with gr.Row():
char_default_image = convenience.sample_blended_chars([0.3, 0.7], ["y", "s"], net, [default_loaded_data], device).convert("RGB")
char_output = gr.Image(char_default_image)
char_slider.change(fn=interpolate_chars, inputs=[char1, char2, char_slider], outputs=[char_output])
char1.change(fn=choose_blend_chars, inputs=[char1, char2], outputs=[char_slider])
char2.change(fn=choose_blend_chars, inputs=[char1, char2], outputs=[char_slider])
with gr.TabItem("Add Randomness"):
mdn_word = gr.Textbox(label="Target Word", value="hello world", max_lines=1)
'''
with gr.Row():
radio_options3 = ["Writer " + str(n) for n in writer_options]
writer = gr.Radio(radio_options3, value="Writer 80", label="Style for Writer")
writer.change(fn=new_writer_mdn, inputs=[writer, slider3, slider4], outputs=[output])
'''
with gr.Row():
with gr.Column():
max_rand = gr.Slider(0, 1, value=1, label="Maximum Randomness")
with gr.Column():
scale_rand = gr.Slider(0, 3, value=0.5, label="Scale of Randomness")
with gr.Row():
mdn_sample_button = gr.Button(value="Resample!")
with gr.Row():
default_im = convenience.mdn_single_sample("hello world", 0.5, 1, net, [default_loaded_data], device).convert('RGB')
mdn_output = gr.Image(default_im)
max_rand.change(fn=sample_mdn, inputs=[scale_rand, max_rand], outputs=[mdn_output])
scale_rand.change(fn=sample_mdn, inputs=[scale_rand, max_rand], outputs=[mdn_output])
mdn_sample_button.click(fn=sample_mdn, inputs=[scale_rand, max_rand], outputs=[mdn_output])
mdn_word.submit(fn=update_mdn_word, inputs=[mdn_word], outputs=[mdn_output])
demo.launch()