Spaces:
Sleeping
Sleeping
| import nibabel as nib | |
| import numpy as np | |
| from nibabel.processing import resample_to_output | |
| from skimage.measure import marching_cubes | |
| def load_ct_to_numpy(data_path): | |
| if type(data_path) != str: | |
| data_path = data_path.name | |
| image = nib.load(data_path) | |
| data = image.get_fdata() | |
| data = np.rot90(data, k=1, axes=(0, 1)) | |
| data[data < -1024] = 1024 | |
| data[data > 1024] = 1024 | |
| data = data - np.amin(data) | |
| data = data / np.amax(data) * 255 | |
| data = data.astype("uint8") | |
| print(data.shape) | |
| return [data[..., i] for i in range(data.shape[-1])] | |
| def load_pred_volume_to_numpy(data_path): | |
| if type(data_path) != str: | |
| data_path = data_path.name | |
| image = nib.load(data_path) | |
| data = image.get_fdata() | |
| data = np.rot90(data, k=1, axes=(0, 1)) | |
| data[data > 0] = 1 | |
| data = data.astype("uint8") | |
| print(data.shape) | |
| return [data[..., i] for i in range(data.shape[-1])] | |
| def nifti_to_glb(path, output="prediction.obj"): | |
| # load NIFTI into numpy array | |
| image = nib.load(path) | |
| resampled = resample_to_output(image, [1, 1, 1], order=1) | |
| data = resampled.get_fdata().astype("uint8") | |
| # extract surface | |
| verts, faces, normals, values = marching_cubes(data, 0) | |
| faces += 1 | |
| with open(output, "w") as thefile: | |
| for item in verts: | |
| thefile.write("v {0} {1} {2}\n".format(item[0], item[1], item[2])) | |
| for item in normals: | |
| thefile.write("vn {0} {1} {2}\n".format(item[0], item[1], item[2])) | |
| for item in faces: | |
| thefile.write( | |
| "f {0}//{0} {1}//{1} {2}//{2}\n".format( | |
| item[0], item[1], item[2] | |
| ) | |
| ) | |