lgm / core /provider_objaverse.py
brarnovidra's picture
lgm
e206fc8
import os
import cv2
import random
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms.functional as TF
from torch.utils.data import Dataset
import kiui
from core.options import Options
from core.utils import get_rays, grid_distortion, orbit_camera_jitter
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
class ObjaverseDataset(Dataset):
def _warn(self):
raise NotImplementedError('this dataset is just an example and cannot be used directly, you should modify it to your own setting! (search keyword TODO)')
def __init__(self, opt: Options, training=True):
self.opt = opt
self.training = training
# TODO: remove this barrier
self._warn()
# TODO: load the list of objects for training
self.items = []
with open('TODO: file containing the list', 'r') as f:
for line in f.readlines():
self.items.append(line.strip())
# naive split
if self.training:
self.items = self.items[:-self.opt.batch_size]
else:
self.items = self.items[-self.opt.batch_size:]
# default camera intrinsics
self.tan_half_fov = np.tan(0.5 * np.deg2rad(self.opt.fovy))
self.proj_matrix = torch.zeros(4, 4, dtype=torch.float32)
self.proj_matrix[0, 0] = 1 / self.tan_half_fov
self.proj_matrix[1, 1] = 1 / self.tan_half_fov
self.proj_matrix[2, 2] = (self.opt.zfar + self.opt.znear) / (self.opt.zfar - self.opt.znear)
self.proj_matrix[3, 2] = - (self.opt.zfar * self.opt.znear) / (self.opt.zfar - self.opt.znear)
self.proj_matrix[2, 3] = 1
def __len__(self):
return len(self.items)
def __getitem__(self, idx):
uid = self.items[idx]
results = {}
# load num_views images
images = []
masks = []
cam_poses = []
vid_cnt = 0
# TODO: choose views, based on your rendering settings
if self.training:
# input views are in (36, 72), other views are randomly selected
vids = np.random.permutation(np.arange(36, 73))[:self.opt.num_input_views].tolist() + np.random.permutation(100).tolist()
else:
# fixed views
vids = np.arange(36, 73, 4).tolist() + np.arange(100).tolist()
for vid in vids:
image_path = os.path.join(uid, 'rgb', f'{vid:03d}.png')
camera_path = os.path.join(uid, 'pose', f'{vid:03d}.txt')
try:
# TODO: load data (modify self.client here)
image = np.frombuffer(self.client.get(image_path), np.uint8)
image = torch.from_numpy(cv2.imdecode(image, cv2.IMREAD_UNCHANGED).astype(np.float32) / 255) # [512, 512, 4] in [0, 1]
c2w = [float(t) for t in self.client.get(camera_path).decode().strip().split(' ')]
c2w = torch.tensor(c2w, dtype=torch.float32).reshape(4, 4)
except Exception as e:
# print(f'[WARN] dataset {uid} {vid}: {e}')
continue
# TODO: you may have a different camera system
# blender world + opencv cam --> opengl world & cam
c2w[1] *= -1
c2w[[1, 2]] = c2w[[2, 1]]
c2w[:3, 1:3] *= -1 # invert up and forward direction
# scale up radius to fully use the [-1, 1]^3 space!
c2w[:3, 3] *= self.opt.cam_radius / 1.5 # 1.5 is the default scale
image = image.permute(2, 0, 1) # [4, 512, 512]
mask = image[3:4] # [1, 512, 512]
image = image[:3] * mask + (1 - mask) # [3, 512, 512], to white bg
image = image[[2,1,0]].contiguous() # bgr to rgb
images.append(image)
masks.append(mask.squeeze(0))
cam_poses.append(c2w)
vid_cnt += 1
if vid_cnt == self.opt.num_views:
break
if vid_cnt < self.opt.num_views:
print(f'[WARN] dataset {uid}: not enough valid views, only {vid_cnt} views found!')
n = self.opt.num_views - vid_cnt
images = images + [images[-1]] * n
masks = masks + [masks[-1]] * n
cam_poses = cam_poses + [cam_poses[-1]] * n
images = torch.stack(images, dim=0) # [V, C, H, W]
masks = torch.stack(masks, dim=0) # [V, H, W]
cam_poses = torch.stack(cam_poses, dim=0) # [V, 4, 4]
# normalized camera feats as in paper (transform the first pose to a fixed position)
transform = torch.tensor([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, self.opt.cam_radius], [0, 0, 0, 1]], dtype=torch.float32) @ torch.inverse(cam_poses[0])
cam_poses = transform.unsqueeze(0) @ cam_poses # [V, 4, 4]
images_input = F.interpolate(images[:self.opt.num_input_views].clone(), size=(self.opt.input_size, self.opt.input_size), mode='bilinear', align_corners=False) # [V, C, H, W]
cam_poses_input = cam_poses[:self.opt.num_input_views].clone()
# data augmentation
if self.training:
# apply random grid distortion to simulate 3D inconsistency
if random.random() < self.opt.prob_grid_distortion:
images_input[1:] = grid_distortion(images_input[1:])
# apply camera jittering (only to input!)
if random.random() < self.opt.prob_cam_jitter:
cam_poses_input[1:] = orbit_camera_jitter(cam_poses_input[1:])
images_input = TF.normalize(images_input, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)
# resize render ground-truth images, range still in [0, 1]
results['images_output'] = F.interpolate(images, size=(self.opt.output_size, self.opt.output_size), mode='bilinear', align_corners=False) # [V, C, output_size, output_size]
results['masks_output'] = F.interpolate(masks.unsqueeze(1), size=(self.opt.output_size, self.opt.output_size), mode='bilinear', align_corners=False) # [V, 1, output_size, output_size]
# build rays for input views
rays_embeddings = []
for i in range(self.opt.num_input_views):
rays_o, rays_d = get_rays(cam_poses_input[i], self.opt.input_size, self.opt.input_size, self.opt.fovy) # [h, w, 3]
rays_plucker = torch.cat([torch.cross(rays_o, rays_d, dim=-1), rays_d], dim=-1) # [h, w, 6]
rays_embeddings.append(rays_plucker)
rays_embeddings = torch.stack(rays_embeddings, dim=0).permute(0, 3, 1, 2).contiguous() # [V, 6, h, w]
final_input = torch.cat([images_input, rays_embeddings], dim=1) # [V=4, 9, H, W]
results['input'] = final_input
# opengl to colmap camera for gaussian renderer
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
# cameras needed by gaussian rasterizer
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
cam_view_proj = cam_view @ self.proj_matrix # [V, 4, 4]
cam_pos = - cam_poses[:, :3, 3] # [V, 3]
results['cam_view'] = cam_view
results['cam_view_proj'] = cam_view_proj
results['cam_pos'] = cam_pos
return results