lgm / main.py
brarnovidra's picture
lgm
e206fc8
raw
history blame
7.84 kB
import tyro
import time
import random
import torch
from core.options import AllConfigs
from core.models import LGM
from accelerate import Accelerator, DistributedDataParallelKwargs
from safetensors.torch import load_file
import kiui
def main():
opt = tyro.cli(AllConfigs)
# ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
accelerator = Accelerator(
mixed_precision=opt.mixed_precision,
gradient_accumulation_steps=opt.gradient_accumulation_steps,
# kwargs_handlers=[ddp_kwargs],
)
# model
model = LGM(opt)
# resume
if opt.resume is not None:
if opt.resume.endswith('safetensors'):
ckpt = load_file(opt.resume, device='cpu')
else:
ckpt = torch.load(opt.resume, map_location='cpu')
# tolerant load (only load matching shapes)
# model.load_state_dict(ckpt, strict=False)
state_dict = model.state_dict()
for k, v in ckpt.items():
if k in state_dict:
if state_dict[k].shape == v.shape:
state_dict[k].copy_(v)
else:
accelerator.print(f'[WARN] mismatching shape for param {k}: ckpt {v.shape} != model {state_dict[k].shape}, ignored.')
else:
accelerator.print(f'[WARN] unexpected param {k}: {v.shape}')
# data
if opt.data_mode == 's3':
from core.provider_objaverse import ObjaverseDataset as Dataset
else:
raise NotImplementedError
train_dataset = Dataset(opt, training=True)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=opt.batch_size,
shuffle=True,
num_workers=opt.num_workers,
pin_memory=True,
drop_last=True,
)
test_dataset = Dataset(opt, training=False)
test_dataloader = torch.utils.data.DataLoader(
test_dataset,
batch_size=opt.batch_size,
shuffle=False,
num_workers=0,
pin_memory=True,
drop_last=False,
)
# optimizer
optimizer = torch.optim.AdamW(model.parameters(), lr=opt.lr, weight_decay=0.05, betas=(0.9, 0.95))
# scheduler (per-iteration)
# scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=3000, eta_min=1e-6)
total_steps = opt.num_epochs * len(train_dataloader)
pct_start = 3000 / total_steps
scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr=opt.lr, total_steps=total_steps, pct_start=pct_start)
# accelerate
model, optimizer, train_dataloader, test_dataloader, scheduler = accelerator.prepare(
model, optimizer, train_dataloader, test_dataloader, scheduler
)
# loop
for epoch in range(opt.num_epochs):
# train
model.train()
total_loss = 0
total_psnr = 0
for i, data in enumerate(train_dataloader):
with accelerator.accumulate(model):
optimizer.zero_grad()
step_ratio = (epoch + i / len(train_dataloader)) / opt.num_epochs
out = model(data, step_ratio)
loss = out['loss']
psnr = out['psnr']
accelerator.backward(loss)
# gradient clipping
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(model.parameters(), opt.gradient_clip)
optimizer.step()
scheduler.step()
total_loss += loss.detach()
total_psnr += psnr.detach()
if accelerator.is_main_process:
# logging
if i % 100 == 0:
mem_free, mem_total = torch.cuda.mem_get_info()
print(f"[INFO] {i}/{len(train_dataloader)} mem: {(mem_total-mem_free)/1024**3:.2f}/{mem_total/1024**3:.2f}G lr: {scheduler.get_last_lr()[0]:.7f} step_ratio: {step_ratio:.4f} loss: {loss.item():.6f}")
# save log images
if i % 500 == 0:
gt_images = data['images_output'].detach().cpu().numpy() # [B, V, 3, output_size, output_size]
gt_images = gt_images.transpose(0, 3, 1, 4, 2).reshape(-1, gt_images.shape[1] * gt_images.shape[3], 3) # [B*output_size, V*output_size, 3]
kiui.write_image(f'{opt.workspace}/train_gt_images_{epoch}_{i}.jpg', gt_images)
# gt_alphas = data['masks_output'].detach().cpu().numpy() # [B, V, 1, output_size, output_size]
# gt_alphas = gt_alphas.transpose(0, 3, 1, 4, 2).reshape(-1, gt_alphas.shape[1] * gt_alphas.shape[3], 1)
# kiui.write_image(f'{opt.workspace}/train_gt_alphas_{epoch}_{i}.jpg', gt_alphas)
pred_images = out['images_pred'].detach().cpu().numpy() # [B, V, 3, output_size, output_size]
pred_images = pred_images.transpose(0, 3, 1, 4, 2).reshape(-1, pred_images.shape[1] * pred_images.shape[3], 3)
kiui.write_image(f'{opt.workspace}/train_pred_images_{epoch}_{i}.jpg', pred_images)
# pred_alphas = out['alphas_pred'].detach().cpu().numpy() # [B, V, 1, output_size, output_size]
# pred_alphas = pred_alphas.transpose(0, 3, 1, 4, 2).reshape(-1, pred_alphas.shape[1] * pred_alphas.shape[3], 1)
# kiui.write_image(f'{opt.workspace}/train_pred_alphas_{epoch}_{i}.jpg', pred_alphas)
total_loss = accelerator.gather_for_metrics(total_loss).mean()
total_psnr = accelerator.gather_for_metrics(total_psnr).mean()
if accelerator.is_main_process:
total_loss /= len(train_dataloader)
total_psnr /= len(train_dataloader)
accelerator.print(f"[train] epoch: {epoch} loss: {total_loss.item():.6f} psnr: {total_psnr.item():.4f}")
# checkpoint
# if epoch % 10 == 0 or epoch == opt.num_epochs - 1:
accelerator.wait_for_everyone()
accelerator.save_model(model, opt.workspace)
# eval
with torch.no_grad():
model.eval()
total_psnr = 0
for i, data in enumerate(test_dataloader):
out = model(data)
psnr = out['psnr']
total_psnr += psnr.detach()
# save some images
if accelerator.is_main_process:
gt_images = data['images_output'].detach().cpu().numpy() # [B, V, 3, output_size, output_size]
gt_images = gt_images.transpose(0, 3, 1, 4, 2).reshape(-1, gt_images.shape[1] * gt_images.shape[3], 3) # [B*output_size, V*output_size, 3]
kiui.write_image(f'{opt.workspace}/eval_gt_images_{epoch}_{i}.jpg', gt_images)
pred_images = out['images_pred'].detach().cpu().numpy() # [B, V, 3, output_size, output_size]
pred_images = pred_images.transpose(0, 3, 1, 4, 2).reshape(-1, pred_images.shape[1] * pred_images.shape[3], 3)
kiui.write_image(f'{opt.workspace}/eval_pred_images_{epoch}_{i}.jpg', pred_images)
# pred_alphas = out['alphas_pred'].detach().cpu().numpy() # [B, V, 1, output_size, output_size]
# pred_alphas = pred_alphas.transpose(0, 3, 1, 4, 2).reshape(-1, pred_alphas.shape[1] * pred_alphas.shape[3], 1)
# kiui.write_image(f'{opt.workspace}/eval_pred_alphas_{epoch}_{i}.jpg', pred_alphas)
torch.cuda.empty_cache()
total_psnr = accelerator.gather_for_metrics(total_psnr).mean()
if accelerator.is_main_process:
total_psnr /= len(test_dataloader)
accelerator.print(f"[eval] epoch: {epoch} psnr: {psnr:.4f}")
if __name__ == "__main__":
main()