splatt3r / utils /export.py
brandonsmart's picture
Initial commit
5ed9923
raw
history blame
10.6 kB
import os
from plyfile import PlyData, PlyElement
from scipy.spatial.transform import Rotation
import einops
import numpy as np
import torch
import torchvision
import trimesh
import lightning as L
import utils.loss_mask as loss_mask
from src.mast3r_src.dust3r.dust3r.viz import OPENGL, pts3d_to_trimesh, cat_meshes
class SaveBatchData(L.Callback):
'''A Lightning callback that occasionally saves batch inputs and outputs to disk.
It is not critical to the training process, and can be disabled if unwanted.'''
def __init__(self, save_dir, train_save_interval=100, val_save_interval=100, test_save_interval=100):
self.save_dir = save_dir
self.train_save_interval = train_save_interval
self.val_save_interval = val_save_interval
self.test_save_interval = test_save_interval
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
if batch_idx % self.train_save_interval == 0 and trainer.global_rank == 0:
self.save_batch_data('train', trainer, pl_module, batch, batch_idx)
def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
if batch_idx % self.val_save_interval == 0 and trainer.global_rank == 0:
self.save_batch_data('val', trainer, pl_module, batch, batch_idx)
def on_test_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
if batch_idx % self.test_save_interval == 0 and trainer.global_rank == 0:
self.save_batch_data('test', trainer, pl_module, batch, batch_idx)
def save_batch_data(self, prefix, trainer, pl_module, batch, batch_idx):
print(f'Saving {prefix} data at epoch {trainer.current_epoch} and batch {batch_idx}')
# Run the batch through the model again
_, _, h, w = batch["context"][0]["img"].shape
view1, view2 = batch['context']
pred1, pred2 = pl_module.forward(view1, view2)
color, depth = pl_module.decoder(batch, pred1, pred2, (h, w))
mask = loss_mask.calculate_loss_mask(batch)
# Save the data
save_dir = os.path.join(
self.save_dir,
f"{prefix}_epoch_{trainer.current_epoch}_batch_{batch_idx}"
)
log_batch_files(batch, color, depth, mask, view1, view2, pred1, pred2, save_dir)
def save_as_ply(pred1, pred2, save_path):
"""Save the 3D Gaussians as a point cloud in the PLY format.
Adapted loosely from PixelSplat"""
def construct_list_of_attributes(num_rest: int) -> list[str]:
'''Construct a list of attributes for the PLY file format. This
corresponds to the attributes used by online readers, such as
https://niujinshuchong.github.io/mip-splatting-demo/index.html'''
attributes = ["x", "y", "z", "nx", "ny", "nz"]
for i in range(3):
attributes.append(f"f_dc_{i}")
for i in range(num_rest):
attributes.append(f"f_rest_{i}")
attributes.append("opacity")
for i in range(3):
attributes.append(f"scale_{i}")
for i in range(4):
attributes.append(f"rot_{i}")
return attributes
def covariance_to_quaternion_and_scale(covariance):
'''Convert the covariance matrix to a four dimensional quaternion and
a three dimensional scale vector'''
# Perform singular value decomposition
U, S, V = torch.linalg.svd(covariance)
# The scale factors are the square roots of the eigenvalues
scale = torch.sqrt(S)
scale = scale.detach().cpu().numpy()
# The rotation matrix is U*Vt
rotation_matrix = torch.bmm(U, V.transpose(-2, -1))
rotation_matrix_np = rotation_matrix.detach().cpu().numpy()
# Use scipy to convert the rotation matrix to a quaternion
rotation = Rotation.from_matrix(rotation_matrix_np)
quaternion = rotation.as_quat()
return quaternion, scale
# Collect the Gaussian parameters
means = torch.stack([pred1["pts3d"], pred2["pts3d_in_other_view"]], dim=1)
covariances = torch.stack([pred1["covariances"], pred2["covariances"]], dim=1)
harmonics = torch.stack([pred1["sh"], pred2["sh"]], dim=1)[..., 0] # Only use the first harmonic
opacities = torch.stack([pred1["opacities"], pred2["opacities"]], dim=1)
# Rearrange the tensors to the correct shape
means = einops.rearrange(means[0], "view h w xyz -> (view h w) xyz").detach().cpu().numpy()
covariances = einops.rearrange(covariances[0], "v h w i j -> (v h w) i j")
harmonics = einops.rearrange(harmonics[0], "view h w xyz -> (view h w) xyz").detach().cpu().numpy()
opacities = einops.rearrange(opacities[0], "view h w xyz -> (view h w) xyz").detach().cpu().numpy()
# Convert the covariance matrices to quaternions and scales
rotations, scales = covariance_to_quaternion_and_scale(covariances)
# Construct the attributes
rest = np.zeros_like(means)
attributes = np.concatenate((means, rest, harmonics, opacities, np.log(scales), rotations), axis=-1)
dtype_full = [(attribute, "f4") for attribute in construct_list_of_attributes(0)]
elements = np.empty(attributes.shape[0], dtype=dtype_full)
elements[:] = list(map(tuple, attributes))
# Save the point cloud
point_cloud = PlyElement.describe(elements, "vertex")
scene = PlyData([point_cloud])
scene.write(save_path)
def save_3d(view1, view2, pred1, pred2, save_dir, as_pointcloud=True, all_points=True):
"""Save the 3D points as a point cloud or as a mesh. Adapted from DUSt3R"""
os.makedirs(save_dir, exist_ok=True)
batch_size = pred1["pts3d"].shape[0]
views = [view1, view2]
for b in range(batch_size):
pts3d = [pred1["pts3d"][b].cpu().numpy()] + [pred2["pts3d_in_other_view"][b].cpu().numpy()]
imgs = [einops.rearrange(view["original_img"][b], "c h w -> h w c").cpu().numpy() for view in views]
mask = [view["valid_mask"][b].cpu().numpy() for view in views]
# Treat all pixels as valid, because we want to render the entire viewpoint
if all_points:
mask = [np.ones_like(m) for m in mask]
# Construct the scene from the 3D points as a point cloud or as a mesh
scene = trimesh.Scene()
if as_pointcloud:
pts = np.concatenate([p[m] for p, m in zip(pts3d, mask)])
col = np.concatenate([p[m] for p, m in zip(imgs, mask)])
pct = trimesh.PointCloud(pts.reshape(-1, 3), colors=col.reshape(-1, 3))
scene.add_geometry(pct)
save_path = os.path.join(save_dir, f"{b}.ply")
else:
meshes = []
for i in range(len(imgs)):
meshes.append(pts3d_to_trimesh(imgs[i], pts3d[i], mask[i]))
mesh = trimesh.Trimesh(**cat_meshes(meshes))
scene.add_geometry(mesh)
save_path = os.path.join(save_dir, f"{b}.glb")
# Save the scene
scene.export(file_obj=save_path)
@torch.no_grad()
def log_batch_files(batch, color, depth, mask, view1, view2, pred1, pred2, save_dir, should_save_3d=False):
'''Save all the relevant debug files for a batch'''
os.makedirs(save_dir, exist_ok=True)
# Save the 3D Gaussians as a .ply file
save_as_ply(pred1, pred2, os.path.join(save_dir, f"gaussians.ply"))
# Save the 3D points as a point cloud and as a mesh (disabled)
if should_save_3d:
save_3d(view1, view2, pred1, pred2, os.path.join(save_dir, "3d_mesh"), as_pointcloud=False)
save_3d(view1, view2, pred1, pred2, os.path.join(save_dir, "3d_pointcloud"), as_pointcloud=True)
# Save the color, depth and valid masks for the input context images
context_images = torch.stack([view["img"] for view in batch["context"]], dim=1)
context_original_images = torch.stack([view["original_img"] for view in batch["context"]], dim=1)
context_depthmaps = torch.stack([view["depthmap"] for view in batch["context"]], dim=1)
context_valid_masks = torch.stack([view["valid_mask"] for view in batch["context"]], dim=1)
for b in range(min(context_images.shape[0], 4)):
torchvision.utils.save_image(context_images[b], os.path.join(save_dir, f"sample_{b}_img_context.jpg"))
torchvision.utils.save_image(context_original_images[b], os.path.join(save_dir, f"sample_{b}_original_img_context.jpg"))
torchvision.utils.save_image(context_depthmaps[b, :, None, ...], os.path.join(save_dir, f"sample_{b}_depthmap.jpg"), normalize=True)
torchvision.utils.save_image(context_valid_masks[b, :, None, ...].float(), os.path.join(save_dir, f"sample_{b}_valid_mask_context.jpg"), normalize=True)
# Save the color and depth images for the target images
target_original_images = torch.stack([view["original_img"] for view in batch["target"]], dim=1)
target_depthmaps = torch.stack([view["depthmap"] for view in batch["target"]], dim=1)
context_valid_masks = torch.stack([view["valid_mask"] for view in batch["context"]], dim=1)
for b in range(min(target_original_images.shape[0], 4)):
torchvision.utils.save_image(target_original_images[b], os.path.join(save_dir, f"sample_{b}_original_img_target.jpg"))
torchvision.utils.save_image(target_depthmaps[b, :, None, ...], os.path.join(save_dir, f"sample_{b}_depthmap_target.jpg"), normalize=True)
# Save the rendered images and depths
for b in range(min(color.shape[0], 4)):
torchvision.utils.save_image(color[b, ...], os.path.join(save_dir, f"sample_{b}_rendered_color.jpg"))
if depth is not None:
for b in range(min(color.shape[0], 4)):
torchvision.utils.save_image(depth[b, :, None, ...], os.path.join(save_dir, f"sample_{b}_rendered_depth.jpg"), normalize=True)
# Save the loss masks
for b in range(min(mask.shape[0], 4)):
torchvision.utils.save_image(mask[b, :, None, ...].float(), os.path.join(save_dir, f"sample_{b}_loss_mask.jpg"), normalize=True)
# Save the masked target and rendered images
target_original_images = torch.stack([view["original_img"] for view in batch["target"]], dim=1)
masked_target_original_images = target_original_images * mask[..., None, :, :]
masked_predictions = color * mask[..., None, :, :]
for b in range(min(target_original_images.shape[0], 4)):
torchvision.utils.save_image(masked_target_original_images[b], os.path.join(save_dir, f"sample_{b}_masked_original_img_target.jpg"))
torchvision.utils.save_image(masked_predictions[b], os.path.join(save_dir, f"sample_{b}_masked_rendered_color.jpg"))