Spaces:
Runtime error
Runtime error
Create precompute_cap_embeddings.py
Browse files- precompute_cap_embeddings.py +69 -0
precompute_cap_embeddings.py
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import logging
|
| 3 |
+
import numpy as np
|
| 4 |
+
from sentence_transformers import SentenceTransformer
|
| 5 |
+
from openai import OpenAI
|
| 6 |
+
from scipy.sparse import save_npz
|
| 7 |
+
import pickle
|
| 8 |
+
from datasets import load_from_disk
|
| 9 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 10 |
+
|
| 11 |
+
# === Logging setup ===
|
| 12 |
+
logger = logging.getLogger("precompute")
|
| 13 |
+
logging.basicConfig(level=logging.INFO)
|
| 14 |
+
|
| 15 |
+
# === API keys ===
|
| 16 |
+
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
|
| 17 |
+
openai_client = OpenAI(api_key=OPENAI_API_KEY)
|
| 18 |
+
|
| 19 |
+
# === Load CAP dataset ===
|
| 20 |
+
LOCAL_PATH = "/data/cap_dataset"
|
| 21 |
+
cap_dataset = load_from_disk(LOCAL_PATH)
|
| 22 |
+
cap_texts = [doc['text'] for doc in cap_dataset]
|
| 23 |
+
logger.info(f"Loaded {len(cap_texts)} CAP texts.")
|
| 24 |
+
|
| 25 |
+
# === TF-IDF Precomputation ===
|
| 26 |
+
if not (os.path.exists("/data/cap_tfidf.pkl") and os.path.exists("/data/cap_tfidf_matrix.npz")):
|
| 27 |
+
logger.info("Precomputing TF-IDF...")
|
| 28 |
+
tfidf = TfidfVectorizer(stop_words='english', max_features=100_000)
|
| 29 |
+
tfidf_matrix = tfidf.fit_transform(cap_texts)
|
| 30 |
+
with open("/data/cap_tfidf.pkl", 'wb') as f:
|
| 31 |
+
pickle.dump(tfidf, f)
|
| 32 |
+
save_npz("/data/cap_tfidf_matrix.npz", tfidf_matrix)
|
| 33 |
+
logger.info("✅ Saved TF-IDF cache files.")
|
| 34 |
+
else:
|
| 35 |
+
logger.info("TF-IDF cache files already exist, skipping.")
|
| 36 |
+
|
| 37 |
+
# === GTE Embeddings Precomputation ===
|
| 38 |
+
if not os.path.exists("/data/cap_gte.npy"):
|
| 39 |
+
logger.info("Precomputing GTE embeddings...")
|
| 40 |
+
encoder_gte = SentenceTransformer("Alibaba-NLP/gte-Qwen2-1.5B-instruct")
|
| 41 |
+
embeddings_gte = encoder_gte.encode(cap_texts, normalize_embeddings=True)
|
| 42 |
+
np.save("/data/cap_gte.npy", embeddings_gte)
|
| 43 |
+
logger.info("✅ Saved GTE embeddings.")
|
| 44 |
+
else:
|
| 45 |
+
logger.info("GTE embeddings cache file already exists, skipping.")
|
| 46 |
+
|
| 47 |
+
# === OpenAI Embeddings Precomputation ===
|
| 48 |
+
if not os.path.exists("/data/cap_openai.npy"):
|
| 49 |
+
logger.info("Precomputing OpenAI embeddings...")
|
| 50 |
+
def get_openai_embeddings(texts):
|
| 51 |
+
chunk_size = 100 # Adjust based on average text length and token limit
|
| 52 |
+
embeddings = []
|
| 53 |
+
for i in range(0, len(texts), chunk_size):
|
| 54 |
+
chunk = texts[i:i + chunk_size]
|
| 55 |
+
response = openai_client.embeddings.create(
|
| 56 |
+
model="text-embedding-3-large",
|
| 57 |
+
input=chunk
|
| 58 |
+
)
|
| 59 |
+
embeddings.extend([item.embedding for item in response.data])
|
| 60 |
+
logger.info(f"Processed chunk {i//chunk_size + 1} of {len(texts)//chunk_size + 1}")
|
| 61 |
+
time.sleep(1) # Rate limit buffer for Tier 5
|
| 62 |
+
return np.array(embeddings)
|
| 63 |
+
embeddings_openai = get_openai_embeddings(cap_texts)
|
| 64 |
+
np.save("/data/cap_openai.npy", embeddings_openai)
|
| 65 |
+
logger.info("✅ Saved OpenAI embeddings.")
|
| 66 |
+
else:
|
| 67 |
+
logger.info("OpenAI embeddings cache file already exists, skipping.")
|
| 68 |
+
|
| 69 |
+
logger.info("✅ Precomputation completed. Cache files are ready for use.")
|