Spaces:
Runtime error
Runtime error
Update precompute_cap_embeddings.py
Browse files- precompute_cap_embeddings.py +18 -9
precompute_cap_embeddings.py
CHANGED
|
@@ -12,40 +12,48 @@ from sklearn.feature_extraction.text import TfidfVectorizer
|
|
| 12 |
logger = logging.getLogger("precompute")
|
| 13 |
logging.basicConfig(level=logging.INFO)
|
| 14 |
|
| 15 |
-
# === API
|
| 16 |
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
openai_client = OpenAI(api_key=OPENAI_API_KEY)
|
| 18 |
|
| 19 |
# === Load CAP dataset ===
|
| 20 |
-
LOCAL_PATH = "
|
|
|
|
|
|
|
| 21 |
cap_dataset = load_from_disk(LOCAL_PATH)
|
| 22 |
cap_texts = [doc['text'] for doc in cap_dataset]
|
| 23 |
logger.info(f"Loaded {len(cap_texts)} CAP texts.")
|
| 24 |
|
| 25 |
# === TF-IDF Precomputation ===
|
| 26 |
-
if not (os.path.exists("
|
| 27 |
logger.info("Precomputing TF-IDF...")
|
| 28 |
tfidf = TfidfVectorizer(stop_words='english', max_features=100_000)
|
| 29 |
tfidf_matrix = tfidf.fit_transform(cap_texts)
|
| 30 |
-
|
|
|
|
| 31 |
pickle.dump(tfidf, f)
|
| 32 |
-
save_npz("
|
| 33 |
logger.info("✅ Saved TF-IDF cache files.")
|
| 34 |
else:
|
| 35 |
logger.info("TF-IDF cache files already exist, skipping.")
|
| 36 |
|
| 37 |
# === GTE Embeddings Precomputation ===
|
| 38 |
-
if not os.path.exists("
|
| 39 |
logger.info("Precomputing GTE embeddings...")
|
| 40 |
encoder_gte = SentenceTransformer("Alibaba-NLP/gte-Qwen2-1.5B-instruct")
|
| 41 |
embeddings_gte = encoder_gte.encode(cap_texts, normalize_embeddings=True)
|
| 42 |
-
|
|
|
|
| 43 |
logger.info("✅ Saved GTE embeddings.")
|
| 44 |
else:
|
| 45 |
logger.info("GTE embeddings cache file already exists, skipping.")
|
| 46 |
|
| 47 |
# === OpenAI Embeddings Precomputation ===
|
| 48 |
-
if not os.path.exists("
|
| 49 |
logger.info("Precomputing OpenAI embeddings...")
|
| 50 |
def get_openai_embeddings(texts):
|
| 51 |
chunk_size = 100 # Adjust based on average text length and token limit
|
|
@@ -61,7 +69,8 @@ if not os.path.exists("/data/cap_openai.npy"):
|
|
| 61 |
time.sleep(1) # Rate limit buffer for Tier 5
|
| 62 |
return np.array(embeddings)
|
| 63 |
embeddings_openai = get_openai_embeddings(cap_texts)
|
| 64 |
-
|
|
|
|
| 65 |
logger.info("✅ Saved OpenAI embeddings.")
|
| 66 |
else:
|
| 67 |
logger.info("OpenAI embeddings cache file already exists, skipping.")
|
|
|
|
| 12 |
logger = logging.getLogger("precompute")
|
| 13 |
logging.basicConfig(level=logging.INFO)
|
| 14 |
|
| 15 |
+
# === API key handling ===
|
| 16 |
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
|
| 17 |
+
if not OPENAI_API_KEY:
|
| 18 |
+
OPENAI_API_KEY = input("Please enter your OpenAI API Key (set OPENAI_API_KEY environment variable for future runs): ")
|
| 19 |
+
if not OPENAI_API_KEY:
|
| 20 |
+
raise EnvironmentError("OPENAI_API_KEY must be provided either as an environment variable or input.")
|
| 21 |
openai_client = OpenAI(api_key=OPENAI_API_KEY)
|
| 22 |
|
| 23 |
# === Load CAP dataset ===
|
| 24 |
+
LOCAL_PATH = "./cap_dataset" # Local path for testing
|
| 25 |
+
if not os.path.exists(LOCAL_PATH):
|
| 26 |
+
raise FileNotFoundError(f"CAP dataset not found at {LOCAL_PATH}. Download it first.")
|
| 27 |
cap_dataset = load_from_disk(LOCAL_PATH)
|
| 28 |
cap_texts = [doc['text'] for doc in cap_dataset]
|
| 29 |
logger.info(f"Loaded {len(cap_texts)} CAP texts.")
|
| 30 |
|
| 31 |
# === TF-IDF Precomputation ===
|
| 32 |
+
if not (os.path.exists("./data/cap_tfidf.pkl") and os.path.exists("./data/cap_tfidf_matrix.npz")):
|
| 33 |
logger.info("Precomputing TF-IDF...")
|
| 34 |
tfidf = TfidfVectorizer(stop_words='english', max_features=100_000)
|
| 35 |
tfidf_matrix = tfidf.fit_transform(cap_texts)
|
| 36 |
+
os.makedirs("./data", exist_ok=True)
|
| 37 |
+
with open("./data/cap_tfidf.pkl", 'wb') as f:
|
| 38 |
pickle.dump(tfidf, f)
|
| 39 |
+
save_npz("./data/cap_tfidf_matrix.npz", tfidf_matrix)
|
| 40 |
logger.info("✅ Saved TF-IDF cache files.")
|
| 41 |
else:
|
| 42 |
logger.info("TF-IDF cache files already exist, skipping.")
|
| 43 |
|
| 44 |
# === GTE Embeddings Precomputation ===
|
| 45 |
+
if not os.path.exists("./data/cap_gte.npy"):
|
| 46 |
logger.info("Precomputing GTE embeddings...")
|
| 47 |
encoder_gte = SentenceTransformer("Alibaba-NLP/gte-Qwen2-1.5B-instruct")
|
| 48 |
embeddings_gte = encoder_gte.encode(cap_texts, normalize_embeddings=True)
|
| 49 |
+
os.makedirs("./data", exist_ok=True)
|
| 50 |
+
np.save("./data/cap_gte.npy", embeddings_gte)
|
| 51 |
logger.info("✅ Saved GTE embeddings.")
|
| 52 |
else:
|
| 53 |
logger.info("GTE embeddings cache file already exists, skipping.")
|
| 54 |
|
| 55 |
# === OpenAI Embeddings Precomputation ===
|
| 56 |
+
if not os.path.exists("./data/cap_openai.npy"):
|
| 57 |
logger.info("Precomputing OpenAI embeddings...")
|
| 58 |
def get_openai_embeddings(texts):
|
| 59 |
chunk_size = 100 # Adjust based on average text length and token limit
|
|
|
|
| 69 |
time.sleep(1) # Rate limit buffer for Tier 5
|
| 70 |
return np.array(embeddings)
|
| 71 |
embeddings_openai = get_openai_embeddings(cap_texts)
|
| 72 |
+
os.makedirs("./data", exist_ok=True)
|
| 73 |
+
np.save("./data/cap_openai.npy", embeddings_openai)
|
| 74 |
logger.info("✅ Saved OpenAI embeddings.")
|
| 75 |
else:
|
| 76 |
logger.info("OpenAI embeddings cache file already exists, skipping.")
|