Spaces:
No application file
No application file
# flask, pandas, sci-kit learn, pickle-mixin | |
from flask import Flask, render_template, request | |
import pandas as pd | |
import pickle | |
import sklearn | |
import numpy as np | |
app =Flask(__name__) | |
model = pickle.load(open('LinearRegressionModel.pkl','rb')) | |
car = pd.read_csv('cleaned car.csv') | |
def index(): | |
companies = sorted(car['company'].unique()) | |
car_models = sorted(car['name'].unique()) | |
year = sorted(car['year'].unique(), reverse=True) | |
fuel_type = car['fuel_type'].unique() | |
companies.insert(0,'Select Company') | |
return render_template('index.html', companies=companies, car_models=car_models,years=year,fuel_types=fuel_type) | |
def predict(): | |
company= request.form.get('company') | |
car_model = request.form.get('car_model') | |
year = int(request.form.get('year')) | |
fuel_type = request.form.get('fuel_type') | |
kms_driven = int(request.form.get('kilo_driven')) | |
prediction = model.predict(pd.DataFrame([[car_model, company,year,kms_driven,fuel_type]], columns=['name','company','year','kms_driven','fuel_type'])) | |
return str(np.round(prediction[0],2)) | |
if __name__=='__main__': | |
app.run(debug=True) |