text2text / verl /utils /model.py
braindeck
Initial commit
bcdf9fa
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Utilities to create common models from huggingface
"""
import os
import warnings
from typing import Dict, Optional, Type
import numpy as np
import torch
from torch import nn
from transformers import (
AutoConfig,
AutoModelForCausalLM,
GenerationConfig,
MistralForSequenceClassification,
PretrainedConfig,
)
from verl.models.registry import ModelRegistry
class LambdaLayer(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn
def forward(self, *args, **kwargs):
return self.fn(*args, **kwargs)
def squeeze(x):
return torch.squeeze(x, dim=-1)
def update_model_config(module_config, override_config_kwargs):
"""Update the module config with the override_config_kwargs.
Args:
module_config: The module config from Huggingface Transformers.
override_config_kwargs: The kwargs to override the module config.
"""
for key, val in override_config_kwargs.items():
if isinstance(val, dict):
update_model_config(getattr(module_config, key), val)
else:
setattr(module_config, key, val)
def get_huggingface_actor_config(model_name: str, override_config_kwargs=None, trust_remote_code=False) -> Dict:
if override_config_kwargs is None:
override_config_kwargs = {}
assert isinstance(override_config_kwargs, Dict), f"override_config_kwargs must be a dict, got {type(override_config_kwargs)}"
module_config = AutoConfig.from_pretrained(model_name, trust_remote_code=trust_remote_code)
update_model_config(module_config, override_config_kwargs)
return module_config
def get_generation_config(
model: str,
trust_remote_code: bool = False,
) -> Optional[GenerationConfig]:
try:
return GenerationConfig.from_pretrained(model)
except OSError: # Not found
try:
config = get_huggingface_actor_config(
model,
trust_remote_code=trust_remote_code,
)
return GenerationConfig.from_model_config(config)
except OSError: # Not found
return None
def create_huggingface_actor(model_name: str, override_config_kwargs=None, automodel_kwargs=None) -> nn.Module:
"""
Args:
model_name:
override_config_kwargs:
Returns:
"""
if override_config_kwargs is None:
override_config_kwargs = {}
if automodel_kwargs is None:
automodel_kwargs = {}
assert isinstance(override_config_kwargs, Dict), f"override_config_kwargs must be a dict, got {type(override_config_kwargs)}"
module_config = get_huggingface_actor_config(model_name, override_config_kwargs, trust_remote_code=automodel_kwargs.get("trust_remote_code", False))
module: nn.Module = AutoModelForCausalLM.from_config(module_config, **automodel_kwargs)
return module
def create_huggingface_critic(model_name: str, override_config_kwargs=None, automodel_kwargs=None) -> nn.Module:
"""
Args:
model_name:
override_config_kwargs:
Returns:
"""
critic_module: nn.Module = create_huggingface_actor(model_name, override_config_kwargs=override_config_kwargs, automodel_kwargs=automodel_kwargs)
if automodel_kwargs is None:
automodel_kwargs = {}
torch_dtype = automodel_kwargs.get("torch_dtype", torch.float32)
critic_module.lm_head = nn.Sequential(nn.Linear(critic_module.config.hidden_size, 1, dtype=torch_dtype), LambdaLayer(fn=squeeze))
return critic_module
def get_model_size(model: nn.Module, scale="auto"):
n_params = sum(p.numel() for p in model.parameters())
if scale == "auto":
if n_params > 1e9:
scale = "B"
elif n_params > 1e6:
scale = "M"
elif n_params > 1e3:
scale = "K"
else:
scale = ""
if scale == "B":
n_params = n_params / 1e9
elif scale == "M":
n_params = n_params / 1e6
elif scale == "K":
n_params = n_params / 1e3
elif scale == "":
pass
else:
raise NotImplementedError(f"Unknown scale {scale}")
return n_params, scale
def print_model_size(model: nn.Module, name: str = None):
n_params, scale = get_model_size(model, scale="auto")
if name is None:
name = model.__class__.__name__
print(f"{name} contains {n_params:.2f}{scale} parameters")
def create_random_mask(
input_ids: torch.Tensor,
max_ratio_of_valid_token: float,
max_ratio_of_left_padding: float,
min_ratio_of_valid_token: float = 0,
):
"""Create a random mask given input_ids. Support left padding and right padding.
Process:
- Sample valid token length
- Sample left_padding length
- Generate padding
Args:
input_ids:
shape (batch_size, seq_len)
Returns:
"""
assert max_ratio_of_valid_token > 0 and max_ratio_of_valid_token <= 1.0
assert max_ratio_of_left_padding >= 0 and max_ratio_of_left_padding < 1.0
assert min_ratio_of_valid_token <= max_ratio_of_valid_token
batch_size, sequence_length = input_ids.shape
max_num_valid_tokens = int(sequence_length * max_ratio_of_valid_token)
min_num_valid_tokens = max(1, int(sequence_length * min_ratio_of_valid_token))
max_left_padding = int(sequence_length * max_ratio_of_left_padding)
assert max_num_valid_tokens + max_left_padding <= sequence_length
assert max_num_valid_tokens > 0 and max_ratio_of_valid_token <= sequence_length
masks = torch.ones_like(input_ids, dtype=torch.int64)
# TODO: we can make this faster
for i in range(batch_size):
num_left_padding = np.random.randint(low=0, high=max_left_padding + 1, dtype=np.int64)
num_valid = np.random.randint(low=min_num_valid_tokens, high=max_num_valid_tokens + 1, dtype=np.int64)
for index in range(num_left_padding):
masks[i, index] = 0
for index in range(num_left_padding + num_valid, sequence_length):
masks[i, index] = 0
return masks
def compute_position_id_with_mask(mask):
return torch.clip(torch.cumsum(mask, dim=-1) - 1, min=0, max=None)
def normalize_model_name(name, pp_rank, vpp_rank, pp_size, vpp_size, num_layers, layer_name="layers"):
"""
Transform the model name in each model_chunk in each pp stage into the name in inference engine
"""
if vpp_size > 1:
# print(f'try to bind vpp params to inference engine...')
layers_per_pp = num_layers // pp_size
layers_per_vpp = layers_per_pp // vpp_size
pp_offset = layers_per_vpp * pp_rank
vpp_offset = (layers_per_vpp * pp_size) * vpp_rank
layer_offset = pp_offset + vpp_offset
else:
layers_per_pp = num_layers // pp_size
layer_offset = layers_per_pp * pp_rank
if layer_name in name: # belong to an intermediate layer
split_name = name.split(".")
# find the num next to split_name
for i, name in enumerate(split_name):
if name == layer_name:
break
layer_num_idx = i + 1
# check the name
assert len(split_name) >= layer_num_idx + 1, f"split_name = {split_name}"
assert split_name[layer_num_idx].isdigit(), f"split_name = {split_name}"
# increment layer_num_idx by layer_offset
split_name[layer_num_idx] = str(int(split_name[layer_num_idx]) + layer_offset)
name = ".".join(split_name) # weight name in inference_tp_model
return name
def normalize_pp_vpp_params(params, num_hidden_layers, layer_name="layers"):
"""
Normalize the pp vpp params into a complete named parameters.
This is useful when gather parameters from pp ranks and passed to a model without pp
params: Iterable[List[Dict[str, param]]]
params contains a list of pp, with a list of vpp named_parameters in each vpp chunk.
output: Dict[str, param]
"""
pp_size = len(params)
for pp_rank in range(len(params)):
vpp_size = len(params[pp_rank])
for vpp_rank in range(vpp_size):
for name, param in params[pp_rank][vpp_rank].items():
normalized_name = normalize_model_name(name, pp_rank, vpp_rank, pp_size, vpp_size, num_hidden_layers, layer_name=layer_name)
yield normalized_name, param
def get_parallel_model_from_config(config, megatron_config, pre_process=None, post_process=None, share_embeddings_and_output_weights=False, value=False):
from megatron.core import ModelParallelConfig
assert isinstance(megatron_config, ModelParallelConfig)
model_class = _get_parallel_model_architecture_from_config(config, value)
model = model_class(
config,
megatron_config,
pre_process=pre_process,
post_process=post_process,
share_embeddings_and_output_weights=share_embeddings_and_output_weights,
)
return model
def _get_parallel_model_architecture_from_config(config: PretrainedConfig, value=False) -> Type[nn.Module]:
architectures = getattr(config, "architectures", [])
for arch in architectures:
model_cls = ModelRegistry.load_model_cls(arch, value)
print("after load model cls")
if model_cls is not None:
return model_cls
raise ValueError(f"Model architectures {architectures} are not supported for now. Supported architectures: {ModelRegistry.get_supported_archs()}")
def _load_hf_model(config, model_config, is_value_model, local_cache_path):
"""Helper function containing the loading hf model logic"""
from accelerate import init_empty_weights
from megatron.core import parallel_state as mpu
from verl.models.mcore.saver import _megatron_calc_global_rank
assert hasattr(model_config, "architectures"), "architectures cannot be empty when load weight!"
architectures = getattr(model_config, "architectures", [])
local_cache_path = os.path.expanduser(local_cache_path)
if config.model.path.startswith("hdfs:"):
from verl.utils.fs import copy_to_local
print(f"start download from {config.model.path}")
local_model_path = copy_to_local(src=config.model.path, cache_dir=local_cache_path)
print("finish download")
else:
local_model_path = config.model.path
print(f"load from local dir {local_model_path}")
src_rank = _megatron_calc_global_rank(tp_rank=0, dp_rank=0, pp_rank=0, cp_rank=mpu.get_context_parallel_rank())
cpu_init_weights = lambda: torch.device("cpu")
init_context = init_empty_weights if torch.distributed.get_rank() != src_rank else cpu_init_weights
with init_context(), warnings.catch_warnings():
warnings.simplefilter("ignore")
# TODO: to find a better way to load mistral7b-rm lm_head
if "mistral7b-rm" in config.model.path:
model = MistralForSequenceClassification.from_pretrained(
local_model_path,
torch_dtype="auto",
# device_map="auto", # disable auto device_map, the HF weight is only loaded to CPU in src_rank
# low_cpu_mem_usage=True
) # use score head instead of lm_head
state_dict = model.state_dict()
state_dict["lm_head.weight"] = state_dict["score.weight"]
state_dict["model.embed_tokens.weight"] = state_dict["model.embed_tokens.weight"][:32000] # workaround, 32001 -> 32000
is_value_model = True
else:
model = AutoModelForCausalLM.from_pretrained(
local_model_path,
torch_dtype="auto",
# device_map="auto", # disable auto device_map, the HF weight is only loaded to CPU in src_rank
# low_cpu_mem_usage=True
)
state_dict = model.state_dict()
return architectures, model, state_dict, is_value_model
def load_megatron_model_weights(config, model_config, parallel_model, params_dtype, is_value_model=False, local_cache_path="~/.cache/verl/rlhf"):
"""Load weights for verl customized model."""
architectures, model, state_dict, is_value_model = _load_hf_model(config, model_config, is_value_model, local_cache_path)
from verl.models.weight_loader_registry import get_weight_loader
print(f"before weight loader: architectures = {architectures}...")
for arch in architectures:
print(f"call weight loader arch = {arch}, model config = {model.config}")
weight_loader = get_weight_loader(arch)
weight_loader(
state_dict=state_dict,
wrapped_models=parallel_model,
config=model.config,
params_dtype=params_dtype,
is_value_model=is_value_model,
tie_word_embeddings=model_config.tie_word_embeddings,
)
return model.config
def load_megatron_gptmodel_weights(config, model_config, parallel_model, params_dtype, is_value_model=False, local_cache_path="~/.cache/verl/rlhf"):
"""Load weights for mcore GPT model."""
_, model, state_dict, is_value_model = _load_hf_model(config, model_config, is_value_model, local_cache_path)
from verl.models.mcore.loader import load_state_dict_to_megatron_gptmodel
load_state_dict_to_megatron_gptmodel(
state_dict=state_dict,
wrapped_models=parallel_model,
config=model.config,
params_dtype=params_dtype,
is_value_model=is_value_model,
)
del state_dict, model
# pad input_ids_rmpad, cu_seqlens and max_seqlen_in_batch to be divisible by tp
def pad_packed_inputs(unpad_tokens: torch.Tensor, cu_seqlens, max_seqlen_in_batch, size):
"""pad the tokens such that the total length is a multiple of size.
This function is useful when applying sequence parallel and context parallel
Args:
unpad_tokens: (total_nnz, ...). Tokens after removing padding
cu_seqlens: (total_nnz + 1,)
max_seqlen_in_batch: int
Returns:
"""
F = nn.functional
total_nnz = unpad_tokens.shape[0]
pad_size = 0 if total_nnz % size == 0 else size - total_nnz % size
# we assume adding a new data in the batch with seqlen pad_size
if pad_size > 0:
if unpad_tokens.ndim == 1:
unpad_tokens = F.pad(unpad_tokens, (0, pad_size))
elif unpad_tokens.ndim == 2:
unpad_tokens = F.pad(unpad_tokens, (0, 0, 0, pad_size))
else:
raise NotImplementedError(f"Padding dim {unpad_tokens.ndim()} is not supported")
cu_seqlens = F.pad(cu_seqlens, (0, 1), value=pad_size + cu_seqlens[-1])
max_seqlen_in_batch = max(max_seqlen_in_batch, pad_size)
return unpad_tokens, cu_seqlens, max_seqlen_in_batch
def load_mcore_dist_weights(parallel_model, dist_weight_path, is_value_model=False):
from megatron.core import dist_checkpointing
from megatron.core.dist_checkpointing.serialization import StrictHandling
from megatron.core.models.gpt.gpt_model import GPTModel
# strict = StrictHandling.IGNORE_ALL if is_value_model else StrictHandling.ASSUME_OK_UNEXPECTED
strict = StrictHandling.ASSUME_OK_UNEXPECTED
for model in parallel_model:
if isinstance(model.module, GPTModel):
ssd = model.module.sharded_state_dict()
else:
ssd = model.module.module.sharded_state_dict()
if is_value_model:
for k in list(ssd.keys()):
if "output_layer" in k:
ssd.pop(k)
dist_checkpointing.load(ssd, dist_weight_path, strict=strict)
return
def get_parallel_gptmodel_from_config(tfconfig, hf_config, pre_process=None, post_process=None, share_embeddings_and_output_weights=False, value=False):
from megatron.core.models.gpt.gpt_layer_specs import get_gpt_decoder_block_spec
from megatron.core.models.gpt.gpt_model import GPTModel
use_te = True
assert tfconfig.normalization == "RMSNorm", "only RMSNorm is supported for now"
transformer_layer_spec = get_gpt_decoder_block_spec(tfconfig, use_transformer_engine=use_te)
rope_scaling_args = {}
if hf_config.rope_scaling is not None:
assert hf_config.rope_scaling["type"] == "linear", "only linear scaling is supported for now"
rope_scaling_args["seq_len_interpolation_factor"] = hf_config.rope_scaling["factor"]
parallel_model = GPTModel(
config=tfconfig,
transformer_layer_spec=transformer_layer_spec,
vocab_size=hf_config.vocab_size,
max_sequence_length=hf_config.max_position_embeddings,
pre_process=pre_process,
post_process=post_process,
share_embeddings_and_output_weights=share_embeddings_and_output_weights,
position_embedding_type="rope",
rotary_base=hf_config.rope_theta,
**rope_scaling_args,
)
# # for layer in parallel_model.decoder.layers:
# layer.self_attention.core_attention.flash_attention.softmax_scale = None
if post_process and value:
from verl.models.llama.megatron.layers.parallel_linear import LinearForLastLayer
parallel_model.output_layer = LinearForLastLayer(input_size=tfconfig.hidden_size, output_size=1, config=tfconfig)
return parallel_model