Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
from transformers import BertTokenizer, BertModel
|
5 |
+
|
6 |
+
# Load tokenizer and model
|
7 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
8 |
+
model = BertModel.from_pretrained('bert-base-uncased')
|
9 |
+
|
10 |
+
def process_text(text):
|
11 |
+
# Remove ASCII characters and lowercase
|
12 |
+
cleaned = re.sub(r'[^\x00-\x7F]+', '', text).lower()
|
13 |
+
|
14 |
+
# Tokenize
|
15 |
+
inputs = tokenizer(cleaned, return_tensors="pt")
|
16 |
+
tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
|
17 |
+
|
18 |
+
# Get BERT embeddings
|
19 |
+
with torch.no_grad():
|
20 |
+
outputs = model(**inputs)
|
21 |
+
embeddings = outputs.last_hidden_state.squeeze(0) # (seq_len, hidden_size)
|
22 |
+
|
23 |
+
# Pair each token with its embedding (truncated for display)
|
24 |
+
token_embeddings = []
|
25 |
+
for token, emb in zip(tokens, embeddings):
|
26 |
+
token_embeddings.append([token, str(emb[:5].tolist()) + '...']) # truncate vector for readability
|
27 |
+
|
28 |
+
return token_embeddings
|
29 |
+
|
30 |
+
# Gradio interface
|
31 |
+
gr.Interface(
|
32 |
+
fn=process_text,
|
33 |
+
inputs=gr.Textbox(lines=4, placeholder="Enter text here..."),
|
34 |
+
outputs=gr.Dataframe(headers=["Token", "Embedding (truncated)"]),
|
35 |
+
title="BERT Tokenizer & Embeddings Viewer",
|
36 |
+
description="Removes ASCII characters, lowercases text, tokenizes using BERT, and shows token embeddings."
|
37 |
+
).launch()
|