merve HF staff commited on
Commit
ff299b4
1 Parent(s): 169c5e8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -11
app.py CHANGED
@@ -27,19 +27,19 @@ text_category_example = [[" anadolu_efes e 18 lik star ! beko_basketbol_ligi nde
27
 
28
 
29
  @spaces.GPU
30
- def nli(input, model_choice="turna_nli_nli_tr"):
31
 
32
  if model_choice=="turna_nli_nli_tr":
33
- nli_model = pipeline(model="boun-tabi-LMG/turna_nli_nli_tr", device=0)
34
  return nli_model(input)[0]["generated_text"]
35
  else:
36
- stsb_model = pipeline(model="boun-tabi-LMG/turna_semantic_similarity_stsb_tr", device=0)
37
 
38
  return stsb_model(input)[0]["generated_text"]
39
 
40
 
41
  @spaces.GPU
42
- def sentiment_analysis(input, model_choice="turna_classification_17bintweet_sentiment"):
43
  if model_choice=="turna_classification_17bintweet_sentiment":
44
  sentiment_model = pipeline(model="boun-tabi-LMG/turna_classification_17bintweet_sentiment", device=0)
45
 
@@ -96,15 +96,16 @@ def categorize(input):
96
  return ttc(input)[0]["generated_text"]
97
 
98
  @spaces.GPU
99
- def turna(input):
100
  turna = pipeline(model="boun-tabi-LMG/TURNA", device=0)
101
 
102
- return turna(input)[0]["generated_text"]
103
 
104
 
105
  with gr.Blocks(theme="abidlabs/Lime") as demo:
106
  gr.Markdown("# TURNA 🐦")
107
  gr.Markdown(DESCRIPTION)
 
108
 
109
  with gr.Tab("Sentiment Analysis"):
110
  gr.Markdown("TURNA fine-tuned on sentiment analysis. Enter text to analyse sentiment and pick the model (tweets or product reviews).")
@@ -123,14 +124,31 @@ with gr.Blocks(theme="abidlabs/Lime") as demo:
123
  gr.Markdown("Pre-trained TURNA. Enter text to start generating.")
124
  with gr.Column():
125
  with gr.Row():
126
- with gr.Column():
127
- text_gen_input = gr.Textbox(label="Text Generation Input")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128
 
129
- text_gen_submit = gr.Button()
 
 
130
  text_gen_output = gr.Textbox(label="Text Generation Output")
131
- text_gen_submit.click(turna, inputs=[text_gen_input], outputs=text_gen_output)
132
  text_gen_example = [["Bir varmış, bir yokmuş, evvel zaman içinde, kalbur saman içinde, uzak diyarların birinde bir turna"]]
133
- text_gen_examples = gr.Examples(examples = text_gen_example, inputs = [text_gen_input], outputs=text_gen_output, fn=turna)
134
 
135
  with gr.Tab("Text Categorization"):
136
  gr.Markdown("TURNA fine-tuned on text categorization. Enter text to categorize text or try the example.")
 
27
 
28
 
29
  @spaces.GPU
30
+ def nli(input, model_choice="turna_nli_nli_tr", generation_params):
31
 
32
  if model_choice=="turna_nli_nli_tr":
33
+ nli_model = pipeline(model="boun-tabi-LMG/turna_nli_nli_tr", device=0, **generation_params)
34
  return nli_model(input)[0]["generated_text"]
35
  else:
36
+ stsb_model = pipeline(model="boun-tabi-LMG/turna_semantic_similarity_stsb_tr", device=0, **generation_params)
37
 
38
  return stsb_model(input)[0]["generated_text"]
39
 
40
 
41
  @spaces.GPU
42
+ def sentiment_analysis(input, model_choice="turna_classification_17bintweet_sentiment", generation_params):
43
  if model_choice=="turna_classification_17bintweet_sentiment":
44
  sentiment_model = pipeline(model="boun-tabi-LMG/turna_classification_17bintweet_sentiment", device=0)
45
 
 
96
  return ttc(input)[0]["generated_text"]
97
 
98
  @spaces.GPU
99
+ def turna(input, generation_params):
100
  turna = pipeline(model="boun-tabi-LMG/TURNA", device=0)
101
 
102
+ return turna(input, **generation_params)[0]["generated_text"]
103
 
104
 
105
  with gr.Blocks(theme="abidlabs/Lime") as demo:
106
  gr.Markdown("# TURNA 🐦")
107
  gr.Markdown(DESCRIPTION)
108
+
109
 
110
  with gr.Tab("Sentiment Analysis"):
111
  gr.Markdown("TURNA fine-tuned on sentiment analysis. Enter text to analyse sentiment and pick the model (tweets or product reviews).")
 
124
  gr.Markdown("Pre-trained TURNA. Enter text to start generating.")
125
  with gr.Column():
126
  with gr.Row():
127
+ max_new_tokens = gr.Slider(label = "Maximum length",
128
+ minimum = 0,
129
+ maximum = 512,
130
+ value = 128)
131
+ length_penalty = gr.Slider(label = "Length penalty",
132
+ value=1.0)
133
+ top_k = gr.Slider("Top-k", value=10)
134
+ top_p = gr.Slider("Top-p", value=0.95)
135
+ temp = gr.Slider(label = "Temperature", value=1.0, minimum=0.1, maximum=100.0)
136
+ repetition_penalty = gr.Slider("Repetition Penalty", minimum=0.0, value=3.0, step=0.1)
137
+ num_beams = gr.Slider(label = "Number of beams", minimum=1,
138
+ maximum=10, value=3)
139
+ do_sample = gr.Radio(choices = [True, False], value = True, label = "Sampling")
140
+ generation_params = {"max_new_tokens":max_new_tokens, length_penalty:"length_penalty",
141
+ "top_k": top_k, "top_p": top_p, "temp": temp, "num_beams": num_beams,
142
+ "do_sample": do_sample}
143
+ with gr.Row():
144
 
145
+ text_gen_input = gr.Textbox(label="Text Generation Input")
146
+
147
+ text_gen_submit = gr.Button()
148
  text_gen_output = gr.Textbox(label="Text Generation Output")
149
+ text_gen_submit.click(turna, inputs=[text_gen_input, generation_params], outputs=text_gen_output)
150
  text_gen_example = [["Bir varmış, bir yokmuş, evvel zaman içinde, kalbur saman içinde, uzak diyarların birinde bir turna"]]
151
+ text_gen_examples = gr.Examples(examples = text_gen_example, inputs = [text_gen_input, generation_params], outputs=text_gen_output, fn=turna)
152
 
153
  with gr.Tab("Text Categorization"):
154
  gr.Markdown("TURNA fine-tuned on text categorization. Enter text to categorize text or try the example.")