Spaces:
Sleeping
Sleeping
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/utils.py | |
# reference: https://github.com/lifeiteng/vall-e | |
import torch | |
import torch.nn.functional as F | |
from typing import Tuple | |
def sequence_mask(length, max_length=None): | |
if max_length is None: | |
max_length = length.max() | |
x = torch.arange(max_length, dtype=length.dtype, device=length.device) | |
return x.unsqueeze(0) < length.unsqueeze(1) | |
def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor: | |
""" | |
Args: | |
lengths: | |
A 1-D tensor containing sentence lengths. | |
max_len: | |
The length of masks. | |
Returns: | |
Return a 2-D bool tensor, where masked positions | |
are filled with `True` and non-masked positions are | |
filled with `False`. | |
#>>> lengths = torch.tensor([1, 3, 2, 5]) | |
#>>> make_pad_mask(lengths) | |
tensor([[False, True, True, True, True], | |
[False, False, False, True, True], | |
[False, False, True, True, True], | |
[False, False, False, False, False]]) | |
""" | |
assert lengths.ndim == 1, lengths.ndim | |
max_len = max(max_len, lengths.max()) | |
n = lengths.size(0) | |
seq_range = torch.arange(0, max_len, device=lengths.device) | |
expaned_lengths = seq_range.unsqueeze(0).expand(n, max_len) | |
return expaned_lengths >= lengths.unsqueeze(-1) | |
# https://github.com/microsoft/unilm/blob/master/xtune/src/transformers/modeling_utils.py | |
def top_k_top_p_filtering( | |
logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1 | |
): | |
"""Filter a distribution of logits using top-k and/or nucleus (top-p) filtering | |
Args: | |
logits: logits distribution shape (batch size, vocabulary size) | |
if top_k > 0: keep only top k tokens with highest probability (top-k filtering). | |
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering). | |
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) | |
Make sure we keep at least min_tokens_to_keep per batch example in the output | |
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 | |
""" | |
if top_k > 0: | |
top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1)) # Safety check | |
# Remove all tokens with a probability less than the last token of the top-k | |
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] | |
logits[indices_to_remove] = filter_value | |
if top_p < 1.0: | |
sorted_logits, sorted_indices = torch.sort(logits, descending=True) | |
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) | |
# Remove tokens with cumulative probability above the threshold (token with 0 are kept) | |
sorted_indices_to_remove = cumulative_probs > top_p | |
if min_tokens_to_keep > 1: | |
# Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below) | |
sorted_indices_to_remove[..., :min_tokens_to_keep] = 0 | |
# Shift the indices to the right to keep also the first token above the threshold | |
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() | |
sorted_indices_to_remove[..., 0] = 0 | |
# scatter sorted tensors to original indexing | |
indices_to_remove = sorted_indices_to_remove.scatter( | |
1, sorted_indices, sorted_indices_to_remove | |
) | |
logits[indices_to_remove] = filter_value | |
return logits | |
def topk_sampling(logits, top_k=10, top_p=1.0, temperature=1.0): | |
# temperature: (`optional`) float | |
# The value used to module the next token probabilities. Must be strictly positive. Default to 1.0. | |
# top_k: (`optional`) int | |
# The number of highest probability vocabulary tokens to keep for top-k-filtering. Between 1 and infinity. Default to 50. | |
# top_p: (`optional`) float | |
# The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Must be between 0 and 1. Default to 1. | |
# Temperature (higher temperature => more likely to sample low probability tokens) | |
if temperature != 1.0: | |
logits = logits / temperature | |
# Top-p/top-k filtering | |
logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p) | |
# Sample | |
token = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1) | |
return token | |
from typing import Optional, Tuple | |
def multinomial_sample_one_no_sync( | |
probs_sort, | |
): # Does multinomial sampling without a cuda synchronization | |
q = torch.empty_like(probs_sort).exponential_(1) | |
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int) | |
def logits_to_probs( | |
logits, | |
previous_tokens: Optional[torch.Tensor] = None, | |
temperature: float = 1.0, | |
top_k: Optional[int] = None, | |
top_p: Optional[int] = None, | |
repetition_penalty: float = 1.0, | |
): | |
# if previous_tokens is not None: | |
# previous_tokens = previous_tokens.squeeze() | |
# print(logits.shape,previous_tokens.shape) | |
# pdb.set_trace() | |
if previous_tokens is not None and repetition_penalty != 1.0: | |
previous_tokens = previous_tokens.long() | |
score = torch.gather(logits, dim=1, index=previous_tokens) | |
score = torch.where( | |
score < 0, score * repetition_penalty, score / repetition_penalty | |
) | |
logits.scatter_(dim=1, index=previous_tokens, src=score) | |
if top_p is not None and top_p < 1.0: | |
sorted_logits, sorted_indices = torch.sort(logits, descending=True) | |
cum_probs = torch.cumsum( | |
torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1 | |
) | |
sorted_indices_to_remove = cum_probs > top_p | |
sorted_indices_to_remove[:, 0] = False # keep at least one option | |
indices_to_remove = sorted_indices_to_remove.scatter( | |
dim=1, index=sorted_indices, src=sorted_indices_to_remove | |
) | |
logits = logits.masked_fill(indices_to_remove, -float("Inf")) | |
logits = logits / max(temperature, 1e-5) | |
if top_k is not None: | |
v, _ = torch.topk(logits, min(top_k, logits.size(-1))) | |
pivot = v[: , -1].unsqueeze(-1) | |
logits = torch.where(logits < pivot, -float("Inf"), logits) | |
probs = torch.nn.functional.softmax(logits, dim=-1) | |
return probs | |
def sample( | |
logits, | |
previous_tokens: Optional[torch.Tensor] = None, | |
**sampling_kwargs, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
probs = logits_to_probs( | |
logits=logits, previous_tokens=previous_tokens, **sampling_kwargs | |
) | |
idx_next = multinomial_sample_one_no_sync(probs) | |
return idx_next, probs | |
def dpo_loss(policy_chosen_logps: torch.FloatTensor, | |
policy_rejected_logps: torch.FloatTensor, | |
reference_chosen_logps: torch.FloatTensor, | |
reference_rejected_logps: torch.FloatTensor, | |
beta: float, | |
reference_free: bool = False) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]: | |
pi_logratios = policy_chosen_logps - policy_rejected_logps | |
ref_logratios = reference_chosen_logps - reference_rejected_logps | |
if reference_free: | |
ref_logratios = 0 | |
logits = pi_logratios - ref_logratios | |
losses = -F.logsigmoid(beta * logits) | |
chosen_rewards = beta * (policy_chosen_logps - reference_chosen_logps).detach() | |
rejected_rewards = beta * (policy_rejected_logps - reference_rejected_logps).detach() | |
return losses.mean(), chosen_rewards, rejected_rewards | |
def get_batch_logps(logits_target: torch.FloatTensor, logits_reject: torch.FloatTensor, labels_target: torch.LongTensor, labels_reject: torch.LongTensor, average_log_prob: bool = False) -> Tuple[torch.FloatTensor, torch.FloatTensor]: | |
# dummy token; we'll ignore the losses on these tokens later | |
per_token_logps_target = torch.gather(logits_target.log_softmax(-1), dim=2, index=labels_target.unsqueeze(2)).squeeze(2) | |
per_token_logps_reject = torch.gather(logits_reject.log_softmax(-1), dim=2, index=labels_reject.unsqueeze(2)).squeeze(2) | |
return per_token_logps_target.sum(-1), per_token_logps_reject.sum(-1) | |
def make_reject_y(y_o, y_lens): | |
def repeat_P(y): | |
range_idx, _ = torch.randint(0, len(y), size=(2,)).sort() | |
pre = y[:range_idx[0]] | |
shf = y[range_idx[1]:] | |
range_text = y[range_idx[0]:range_idx[1]] | |
new_y = torch.cat([pre, range_text, range_text, shf]) | |
return new_y | |
def lost_P(y): | |
range_idx, _ = torch.randint(0, len(y), size=(2,)).sort() | |
pre = y[:range_idx[0]] | |
shf = y[range_idx[1]:] | |
range_text = y[range_idx[0]:range_idx[1]] | |
new_y = torch.cat([pre, shf]) | |
return new_y | |
bs = len(y_lens) | |
reject_y = [] | |
reject_y_lens = [] | |
for b in range(bs): | |
process_item_idx = torch.randint(0, 1, size=(1, ))[0] | |
if process_item_idx == 0: | |
new_y = repeat_P(y_o[b]) | |
reject_y.append(new_y) | |
reject_y_lens.append(len(new_y)) | |
elif process_item_idx==1: | |
new_y = lost_P(y_o[b]) | |
reject_y.append(new_y) | |
reject_y_lens.append(len(new_y)) | |
max_length = max(reject_y_lens) | |
for b in range(bs): | |
pad_length = max_length - reject_y_lens[b] | |
reject_y[b] = torch.cat([reject_y[b], torch.zeros(pad_length, dtype=y_o.dtype, device=y_o.device)], dim=0) | |
reject_y = torch.stack(reject_y, dim = 0) | |
reject_y_lens = torch.tensor(reject_y_lens, device=y_lens.device) | |
return reject_y, reject_y_lens | |