Spaces:
Runtime error
Runtime error
simonl0909
commited on
Commit
•
6f6920c
1
Parent(s):
3db32b8
webhooks test
Browse files- app.py +12 -91
- local-requirements.txt +8 -0
- model.py +16 -0
app.py
CHANGED
@@ -1,97 +1,18 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import time
|
4 |
-
import tqdm
|
5 |
-
from datasets import load_dataset
|
6 |
-
import shutil
|
7 |
-
from uuid import uuid4
|
8 |
|
9 |
-
|
10 |
-
with gr.Row():
|
11 |
-
text = gr.Textbox()
|
12 |
-
textb = gr.Textbox()
|
13 |
-
with gr.Row():
|
14 |
-
load_set_btn = gr.Button("Load Set")
|
15 |
-
load_nested_set_btn = gr.Button("Load Nested Set")
|
16 |
-
load_random_btn = gr.Button("Load Random")
|
17 |
-
clean_imgs_btn = gr.Button("Clean Images")
|
18 |
-
wait_btn = gr.Button("Wait")
|
19 |
-
do_all_btn = gr.Button("Do All")
|
20 |
-
track_tqdm_btn = gr.Button("Bind TQDM")
|
21 |
-
bind_internal_tqdm_btn = gr.Button("Bind Internal TQDM")
|
22 |
|
23 |
-
|
|
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
imgs = [None] * 24
|
28 |
-
for img in progress.tqdm(imgs, desc="Loading from list"):
|
29 |
-
time.sleep(0.1)
|
30 |
-
return "done"
|
31 |
-
load_set_btn.click(load_set, [text, textb], text2)
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
time.sleep(2)
|
38 |
-
for img in progress.tqdm(img_set, desc="inner list"):
|
39 |
-
time.sleep(0.1)
|
40 |
-
return "done"
|
41 |
-
load_nested_set_btn.click(load_nested_set, [text, textb], text2)
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
def yielder():
|
46 |
-
for i in range(0, random.randint(15, 20)):
|
47 |
-
time.sleep(0.1)
|
48 |
-
yield None
|
49 |
-
for img in progress.tqdm(yielder()):
|
50 |
-
pass
|
51 |
-
return "done"
|
52 |
-
load_random_btn.click(load_random, {text, textb}, text2)
|
53 |
-
|
54 |
-
# manual progress
|
55 |
-
def clean_imgs(text, progress=gr.Progress()):
|
56 |
-
progress(0.2, desc="Collecting Images")
|
57 |
-
time.sleep(1)
|
58 |
-
progress(0.5, desc="Cleaning Images")
|
59 |
-
time.sleep(1.5)
|
60 |
-
progress(0.8, desc="Sending Images")
|
61 |
-
time.sleep(1.5)
|
62 |
-
return "done"
|
63 |
-
clean_imgs_btn.click(clean_imgs, text, text2)
|
64 |
-
|
65 |
-
# no progress
|
66 |
-
def wait(text):
|
67 |
-
time.sleep(4)
|
68 |
-
return "done"
|
69 |
-
wait_btn.click(wait, text, text2)
|
70 |
-
|
71 |
-
# multiple progressions
|
72 |
-
def do_all(data, progress=gr.Progress()):
|
73 |
-
load_set(data[text], data[textb], progress)
|
74 |
-
load_random(data, progress)
|
75 |
-
clean_imgs(data[text], progress)
|
76 |
-
progress(None)
|
77 |
-
wait(text)
|
78 |
-
return "done"
|
79 |
-
do_all_btn.click(do_all, {text, textb}, text2)
|
80 |
-
|
81 |
-
def track_tqdm(data, progress=gr.Progress(track_tqdm=True)):
|
82 |
-
for i in tqdm.tqdm(range(5), desc="outer"):
|
83 |
-
for j in tqdm.tqdm(range(4), desc="inner"):
|
84 |
-
time.sleep(1)
|
85 |
-
return "done"
|
86 |
-
track_tqdm_btn.click(track_tqdm, {text, textb}, text2)
|
87 |
-
|
88 |
-
def bind_internal_tqdm(data, progress=gr.Progress(track_tqdm=True)):
|
89 |
-
outdir = "__tmp/" + str(uuid4())
|
90 |
-
load_dataset("beans", split="train", cache_dir=outdir)
|
91 |
-
shutil.rmtree(outdir)
|
92 |
-
return "done"
|
93 |
-
bind_internal_tqdm_btn.click(bind_internal_tqdm, {text, textb}, text2)
|
94 |
-
|
95 |
-
|
96 |
-
if __name__ == "__main__":
|
97 |
-
demo.queue(concurrency_count=20).launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from huggingface_hub import WebhooksServer, WebhookPayload
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
from model import model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
with gr.Blocks() as ui:
|
7 |
+
progress = gr.Progress(track_tqdm=True)
|
8 |
|
9 |
+
# 2. Create WebhooksServer with custom UI and secret
|
10 |
+
app = WebhooksServer(ui=ui, webhook_secret="test")
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
@app.add_webhook
|
13 |
+
async def train(payload: WebhookPayload):
|
14 |
+
print("Received payload:", payload.dict())
|
15 |
+
return payload.dict()
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
# 5. Start server (optional)
|
18 |
+
app.run()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
local-requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
datasets
|
2 |
+
huggingface-hub>=0.12.1
|
3 |
+
protobuf<4
|
4 |
+
click<8.1
|
5 |
+
pydantic~=1.0
|
6 |
+
gradio[oauth]==3.50.2
|
7 |
+
uvicorn>=0.14.0
|
8 |
+
spaces==0.17.0
|
model.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sentence_transformers import SentenceTransformer, models
|
2 |
+
import torch
|
3 |
+
|
4 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
5 |
+
|
6 |
+
word_embedding_model = models.Transformer("BAAI/bge-base-en-v1.5", max_seq_length=512)
|
7 |
+
|
8 |
+
word_embedding_model.tokenizer.add_tokens(['[TURN]'], special_tokens=True)
|
9 |
+
word_embedding_model.tokenizer.truncation_side = 'left'
|
10 |
+
word_embedding_model.auto_model.resize_token_embeddings(len(word_embedding_model.tokenizer))
|
11 |
+
|
12 |
+
pooling_model = models.Pooling(
|
13 |
+
word_embedding_model.get_word_embedding_dimension(), pooling_mode="cls"
|
14 |
+
)
|
15 |
+
|
16 |
+
model = SentenceTransformer(modules=[word_embedding_model, pooling_model], device=device)
|