Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
# Constants for default values | |
DEFAULT_CHUNK_SIZE = 100 | |
DEFAULT_CHUNK_OVERLAP = 0 | |
DEFAULT_NUM_CHUNKS = 10 | |
def tokenize_text(method, text, chunk_size, chunk_overlap, num_chunks): | |
""" | |
Tokenizes the input text based on the selected method and provided parameters. | |
""" | |
num_chunks = int(num_chunks) | |
output = [] | |
# Ensure text is provided | |
if not text.strip(): | |
return pd.DataFrame(columns=['Chunk #', 'Text Chunk', 'Character Count', 'Token Count']) | |
if method == "RecursiveCharacterTextSplitter": | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap, length_function=len, is_separator_regex=False) | |
tokenized_texts = text_splitter.split_text(text)[:num_chunks] | |
for i, chunk in enumerate(tokenized_texts): | |
output.append({ | |
'Chunk #': i, | |
'Text Chunk': chunk, | |
'Character Count': len(chunk), | |
'Token Count': len(chunk.split()) | |
}) | |
df = pd.DataFrame(output) | |
return df | |
iface = gr.Interface( | |
fn=tokenize_text, | |
inputs=[ | |
gr.Dropdown(label="Select Tokenization Method", choices=["RecursiveCharacterTextSplitter"]), | |
gr.Textbox(label="Enter Text", lines=10, placeholder="Type or paste text here."), | |
gr.Number(label="Chunk Size", value=DEFAULT_CHUNK_SIZE), | |
gr.Number(label="Chunk Overlap", value=DEFAULT_CHUNK_OVERLAP), | |
gr.Number(label="Number of Chunks to Display", value=DEFAULT_NUM_CHUNKS) | |
], | |
outputs=gr.Dataframe(headers=["Chunk #", "Text Chunk", "Character Count", "Token Count"], height=900,), | |
title="Text Tokenization Tool", | |
description="A tool for tokenizing text using different methods." | |
) | |
iface.launch() | |