Spaces:
Running
Running
import streamlit as st | |
from data_reader import DataReader | |
from datetime import datetime | |
from feature_handler import FeatureHandler | |
from model_trainer import ModelTrainer | |
from evaluator import Evaluator | |
from config import * | |
import pandas as pd | |
import json | |
def extract_column_info(df): | |
column_info = {} | |
for column in df.columns: | |
column_info[column] = { | |
"feature_name": column, | |
"is_selected": True, | |
"feature_variable_type": str(df[column].dtype), | |
"feature_details": { | |
"numerical_handling": None, | |
"rescaling": False, | |
"scaling_type": None, | |
"make_derived_feats": False, | |
"missing_values": "Impute", | |
"impute_with": None | |
} | |
} | |
return column_info | |
def extract_algorithms_info(algo_list): | |
algo_info = {} | |
for algo in algo_list: | |
algo_info[algo] = { | |
"model_name" : algo, | |
"is_selected" : False, | |
"random_state" : [42] | |
} | |
return algo_info | |
def generate_json(session_name, dataset_name, target, train, feature_handling, algorithms): | |
json_data = { | |
"session_name": session_name, | |
"session_description": session_name, | |
"design_state_data": { | |
"session_info": { | |
"dataset": dataset_name, | |
"session_name": session_name, | |
"session_description": session_name | |
}, | |
"target": target, | |
"train": train, | |
"feature_handling": feature_handling, | |
"algorithms": algorithms | |
} | |
} | |
return json_data | |
def train_models(save_file_path, json_file): | |
if json_file is not None: | |
with st.spinner('Hang On, Training Models For You...'): | |
# Read the RTF file and parse the JSON content | |
data_reader = DataReader(rtf_file_path=save_file_path) | |
json_content = data_reader.rtf_to_json_parser() | |
# Extract dataset information from JSON | |
problem_type, target_variable = data_reader.get_problem_type_and_target_variable() | |
# Extract feature names and target variable from JSON content | |
selected_features, feature_details = data_reader.get_selected_features_and_details() | |
# Transform features | |
feature_handler = FeatureHandler(json_content) | |
X_train, X_test, y_train, y_test = feature_handler.get_split_dataset(selected_features) | |
X_train_transformed , X_test_transformed = feature_handler.transform_X_features(X_train, X_test, feature_details) | |
y_train_transformed , y_test_transformed = feature_handler.transform_y_features(y_train, y_test, feature_details, target_variable) | |
# Model building and hyperparameter tuning | |
selected_models, model_parameters = data_reader.get_selected_models() | |
model_trainer = ModelTrainer(json_content) | |
trained_models = model_trainer.build_and_tune_model(X_train_transformed, y_train_transformed, | |
problem_type, selected_models, model_parameters) | |
# Evaluate the model | |
evaluator = Evaluator(json_content, problem_type, target_variable) | |
evaluation_results = evaluator.evaluate_model(trained_models, X_test_transformed, y_test_transformed) | |
# display bar chart of evaluation results | |
st.subheader("Different Model Comparison") | |
evaluator.display_metrics(evaluation_results) | |
else: | |
st.error("Please upload a JSON file first.") | |
def create_json_and_train(): | |
st.write("### Upload Dataset: ") | |
uploaded_file = st.file_uploader("Upload Dataset CSV", type=['csv']) | |
if uploaded_file is not None: | |
df = pd.read_csv(uploaded_file) | |
st.write("### Sample Data:") | |
st.write(df.head()) | |
# Extract column information | |
column_info = extract_column_info(df) | |
# take input for prediction_type | |
st.write("### Select Prediction Parameters:") | |
prediction_type = st.selectbox("Prediction Type", ["Regression", "Classification"], key="prediction_selectbox") | |
# Checkbox for selecting target columns and feature details | |
target_variable = st.selectbox("Target Variable", df.columns, key="target_selectbox") | |
# add option to let user select how to encode target variable | |
column_info[target_variable]["feature_details"] = {} | |
# if target_variable is of category type, add option to label encode | |
if column_info[target_variable]["feature_variable_type"] == "object": | |
column_info[target_variable]["feature_details"]["text_handling"] = st.selectbox("Text Handling", ["Tokenize and hash", "Label Encoding"], key="text_handling_selectbox", index=0) | |
train = {} | |
train["k_fold"] = st.number_input("K-Fold", min_value=2, value=5, step=1, key="kfold") | |
train["train_ratio"] = st.number_input("Train Ratio", min_value=0.0, max_value=1.0, value=0.8, step=0.1, key="train_ratio") | |
train["random_seed"] = st.number_input("Random Seed", min_value=0, value=42, step=1, key="random_seed") | |
target = {"prediction_type": prediction_type, | |
"target": target_variable, | |
"type": prediction_type, | |
"partitioning": True} | |
st.write("### Select Columns to Include:") | |
for column in column_info: | |
if column != target_variable: | |
column_info[column]["is_selected"] = st.checkbox(column, key=f"{column}_checkbox", value=False) | |
if column_info[column]["is_selected"]: | |
with st.expander(f"{column} Feature Handling", expanded=False): | |
column_info[column]["feature_details"]["rescaling"] = st.checkbox("Rescaling", key=f"{column}_scaling_checkbox") | |
if column_info[column]["feature_details"]["rescaling"] and column_info[column]["feature_variable_type"] != "object": | |
column_info[column]["feature_details"]["scaling_type"] = st.selectbox("Scaling Type", ["MinMaxScaler", "StandardScaler"], key=f"{column}_scaling_type_select") | |
column_info[column]["feature_details"]["missing_values"] = st.checkbox("Imputation", key=f"{column}_imputation_checkbox") | |
if column_info[column]["feature_details"]["missing_values"]: | |
column_info[column]["feature_details"]["impute_with"] = st.selectbox("Imputation With", ["Mean", "Median", "Mode", "Custom"], key=f"{column}_imputation_type_select") | |
if column_info[column]["feature_details"]["impute_with"] == "Custom": | |
column_info[column]["feature_details"]["custom_impute_value"] = st.text_input(f"Custom Impute Value", key=f"{column}_imputation_value_input") | |
if column_info[column]["feature_variable_type"] == "object": | |
column_info[column]["feature_details"]["encoding"] = st.selectbox("Encode Categorical Feature with", ["OridnalEncoder", "OneHotEncoder"], key = f"{column}_encoding_type") | |
# Checkbox for selecting columns | |
st.write(f"### Select {prediction_type} Algorithms:") | |
if prediction_type == "Regression": | |
algorithms_list = ["RandomForestRegressor", "LinearRegression", "RidgeRegression", "LassoRegression", | |
"ElasticNetRegression","xg_boost", "DecisionTreeRegressor", "SVM", "KNN", "neural_network"] | |
else: | |
algorithms_list = ["RandomForestClassifier", "LogisticRegression", "xg_boost", | |
"DecisionTreeClassifier", "SVM", "KNN", "neural_network"] | |
algo_info = extract_algorithms_info(algorithms_list) | |
for algo in algo_info: | |
algo_info[algo]["is_selected"] = st.checkbox(algo, key=f"{algo}_checkbox") | |
if algo_info[algo]["is_selected"]: | |
with st.expander(f"{algo} HyperParameters", expanded=False): | |
if algo == "RandomForestClassifier" or algo == "RandomForestRegressor": | |
algo_info[algo]["min_trees"] = st.number_input("Minimum Trees", min_value=1, max_value=100, value=10, step=1, key=f"{algo}_min_trees") | |
algo_info[algo]["max_trees"] = st.number_input("Maximum Trees", min_value=1, max_value=100, value=30, step=1, key=f"{algo}_max_trees") | |
algo_info[algo]["min_depth"] = st.number_input("Minimum Depth", min_value=1, max_value=100, value=20, step=1, key=f"{algo}_min_depth") | |
algo_info[algo]["max_depth"] = st.number_input("Maximum Depth", min_value=1, max_value=100, value=30, step=1, key=f"{algo}_max_depth") | |
algo_info[algo]["min_samples_per_leaf_min_value"] = st.number_input("Minimum Samples Per Leaf", min_value=1, max_value=100, value=5, step=1, key=f"{algo}_min_samples_per_leaf") | |
algo_info[algo]["min_samples_per_leaf_max_value"] = st.number_input("Maximum Samples Per Leaf", min_value=1, max_value=100, value=50, step=1, key=f"{algo}_max_samples_per_leaf") | |
elif algo == "LinearRegression" or algo == "LogisticRegression" or algo == "ElasticNetRegression": | |
algo_info[algo]["min_iter"] = st.number_input("Minimum Iterations", min_value=1, max_value=100, value=30, step=1, key=f"{algo}_min_iter") | |
algo_info[algo]["max_iter"] = st.number_input("Maximum Iterations", min_value=1, max_value=100, value=50, step=1, key=f"{algo}_max_iter") | |
algo_info[algo]["min_regparam"] = st.number_input("Minimum Regularization Parameter", min_value=0.0, max_value=1.0, value=0.5, step=0.1, key=f"{algo}_min_regparam") | |
algo_info[algo]["max_regparam"] = st.number_input("Maximum Regularization Parameter", min_value=0.0, max_value=1.0, value=0.8, step=0.1, key=f"{algo}_max_regparam") | |
algo_info[algo]["min_elasticnet"] = st.number_input("Minimum Elasticnet", min_value=0.0, max_value=1.0, value=0.5, step=0.1, key=f"{algo}_min_elasticnet") | |
algo_info[algo]["max_elasticnet"] = st.number_input("Maximum Elasticnet", min_value=0.0, max_value=1.0, value=0.8, step=0.1, key=f"{algo}_max_elasticnet") | |
elif algo == "RidgeRegression" or algo == "LassoRegression": | |
algo_info[algo]["min_iter"] = st.number_input("Minimum Iterations", min_value=1, max_value=100, value=30, step=1, key=f"{algo}_min_iter") | |
algo_info[algo]["max_iter"] = st.number_input("Maximum Iterations", min_value=1, max_value=100, value=50, step=1, key=f"{algo}_max_iter") | |
algo_info[algo]["min_regparam"] = st.number_input("Minimum Regularization Parameter", min_value=0.0, max_value=1.0, value=0.5, step=0.1, key=f"{algo}_min_regparam") | |
algo_info[algo]["max_regparam"] = st.number_input("Maximum Regularization Parameter", min_value=0.0, max_value=1.0, value=0.8, step=0.1, key=f"{algo}_max_regparam") | |
elif algo == "DecisionTreeClassifier" or algo == "DecisionTreeRegressor": | |
algo_info[algo]["min_depth"] = st.number_input("Minimum Depth", min_value=1, max_value=100, value=4, step=1, key=f"{algo}_min_depth") | |
algo_info[algo]["max_depth"] = st.number_input("Maximum Depth", min_value=1, max_value=100, value=7, step=1, key=f"{algo}_max_depth") | |
algo_info[algo]["use_gini"] = st.checkbox("Use Gini Index", value=False, key=f"{algo}_use_gini") | |
algo_info[algo]["use_entropy"] = st.checkbox("Use Entropy", value=True, key=f"{algo}_use_entropy") | |
algo_info[algo]["min_samples_per_leaf"] = st.text_input("Minimum Samples Per Leaf", placeholder="Enter comma separated list of values for min_samples_per_leaf", | |
key=f"{algo}_min_samples_per_leaf") | |
# check if min_samples_per_leaf is there | |
if algo_info[algo]["min_samples_per_leaf"]: | |
algo_info[algo]["min_samples_per_leaf"] = [int(x) for x in algo_info[algo]["min_samples_per_leaf"].split(",")] | |
else: | |
algo_info[algo]["min_samples_per_leaf"] = [12, 6] | |
algo_info[algo]["use_best"] = st.checkbox("Use Best", value=True, key=f"{algo}_use_best") | |
algo_info[algo]["use_random"] = st.checkbox("Use Random", value=True, key=f"{algo}_use_random") | |
elif algo == "SVM": | |
algo_info[algo]["linear_kernel"] = st.checkbox("Linear Kernel", value=True, key=f"{algo}_linear_kernel") | |
algo_info[algo]["rep_kernel"] = st.checkbox("Rep Kernel", value=True, key=f"{algo}_rep_kernel") | |
algo_info[algo]["polynomial_kernel"] = st.checkbox("Polynomial Kernel", value=True, key=f"{algo}_polynomial_kernel") | |
algo_info[algo]["sigmoid_kernel"] = st.checkbox("Sigmoid Kernel", value=True, key=f"{algo}_sigmoid_kernel") | |
algo_info[algo]["c_value"] = st.text_input("C Value", placeholder="Enter comma separated list of values for C Value", key=f"{algo}_c_value") | |
# convert c values into list of integers | |
if algo_info[algo]["c_value"]: | |
algo_info[algo]["c_value"] = [int(x) for x in algo_info[algo]["c_value"].split(",")] | |
else: | |
algo_info[algo]["c_value"] = [566, 79] | |
algo_info[algo]["auto"] = st.checkbox("Auto", value=True, key=f"{algo}_auto") | |
algo_info[algo]["scale"] = st.checkbox("Scale", value=True, key=f"{algo}_scale") | |
algo_info[algo]["custom_gamma_values"] = st.checkbox("Custom Gamma Values", value=True, key=f"{algo}_custom_gamma_values") | |
algo_info[algo]["tolerance"] = [st.number_input("Tolerance", min_value=0.0, max_value=1.0, value=0.001, step=0.001, key=f"{algo}_tolerance")] | |
algo_info[algo]["max_iterations"] = st.number_input("Maximum Iterations", min_value=1, max_value=100, value=10, step=1, key=f"{algo}_max_iterations") | |
if algo_info[algo]["max_iterations"]: | |
algo_info[algo]["max_iterations"] = [algo_info[algo]["max_iterations"]] | |
elif algo == "KNN": | |
algo_info[algo]["k_value"] = st.text_input("K Value", placeholder="Enter comma separated list of values for K Value", key=f"{algo}_k_value") | |
if algo_info[algo]["k_value"]: | |
algo_info[algo]["k_value"] = [int(x) for x in algo_info[algo]["k_value"].split(",")] | |
else: | |
algo_info[algo]["k_value"] = [78] | |
algo_info[algo]["distance_weighting"] = [st.checkbox("Distance Weighting", value=True, key=f"{algo}_distance_weighting")] | |
algo_info[algo]["neighbour_finding_algorithm"] = st.selectbox("Neighbour Finding Algorithm", ["auto", "ball_tree", "kd_tree", "brute"], key=f"{algo}_neighbour_finding_algorithm", index=0) | |
algo_info[algo]["p_value"] = st.number_input("P Value", min_value=1, max_value=2, value=1, step=1, key=f"{algo}_p_value") | |
elif algo == "neural_network": | |
algo_info[algo]["hidden_layer_sizes"] = st.text_input("Hidden Layer Sizes", placeholder="Enter comma separated list of values for Hidden Layer Sizes", key=f"{algo}_hidden_layer_sizes") | |
if algo_info[algo]["hidden_layer_sizes"]: | |
algo_info[algo]["hidden_layer_sizes"] = [int(x) for x in algo_info[algo]["hidden_layer_sizes"].split(",")] | |
else: | |
algo_info[algo]["hidden_layer_sizes"] = [67, 89] | |
algo_info[algo]["activation"] = "" | |
algo_info[algo]["alpha_value"] = [st.number_input("Alpha Value", min_value=0.0, max_value=1.0, value=0.01, step=0.0001, key=f"{algo}_alpha_value")] | |
algo_info[algo]["max_iterations"] = [st.number_input("Max Iterations", min_value=0, max_value=1000, value=10, step=100, key=f"{algo}_max_iterations")] | |
algo_info[algo]["convergence_tolerance"] = [st.number_input("Convergence Tolerance", min_value=0.0, max_value=1.0, value=0.1, step=0.0001, key=f"{algo}_convergence_tolerance")] | |
algo_info[algo]["early_stopping"] = [st.checkbox("Early Stopping", value=True, key=f"{algo}_early_stopping")] | |
algo_info[algo]["solver"] = [st.selectbox("Solver", ["lbfgs", "sgd", "adam"], key=f"{algo}_solver", index=2)] | |
algo_info[algo]["shuffle_data"] = [st.checkbox("Shuffle Data", value=True, key=f"{algo}_shuffle_data")] | |
algo_info[algo]["initial_learning_rate"] = [st.number_input("Initial Learning Rate", min_value=0.0, max_value=1.0, value=0.1, step=0.001, key=f"{algo}_initial_learning_rate")] | |
algo_info[algo]["automatic_batching"] = [st.checkbox("Automatic Batching", value=True, key=f"{algo}_automatic_batching")] | |
algo_info[algo]["beta_1"] = [st.number_input("Beta 1", min_value=0.0, max_value=1.0, value=0.1, step=0.1, key=f"{algo}_beta_1")] | |
algo_info[algo]["beta_2"] = [st.number_input("Beta 2", min_value=0.0, max_value=1.0, value=0.1, step=0.1, key=f"{algo}_beta_2")] | |
algo_info[algo]["epsilon"] = [st.number_input("Epsilon", min_value=0.0, max_value=1.0, value=0.1, step=0.1, key=f"{algo}_epsilon")] | |
algo_info[algo]["power_t"] = [st.number_input("Power T", min_value=0.0, max_value=1.0, value=0.1, step=0.1, key=f"{algo}_power_t")] | |
algo_info[algo]["momentum"] = [st.number_input("Momentum", min_value=0.0, max_value=1.0, value=0.1, step=0.1, key=f"{algo}_momentum")] | |
algo_info[algo]["use_nesterov_momentum"] = [st.checkbox("Use Nesterov Momentum", value=False, key=f"{algo}_use_nesterov_momentum")] | |
elif algo == "xg_boost": | |
algo_info[algo]["use_gradient_boosted_tree"] = st.checkbox("Use Gradient Boosted Tree", value=True, key=f"{algo}_use_gradient_boosted_tree") | |
algo_info[algo]["dart"] = st.checkbox("DART", value=True, key=f"{algo}_dart") | |
algo_info[algo]["tree_method"] = [st.selectbox("Tree Method", ["exact", "approx", "hist"], key=f"{algo}_tree_method", index=1)] | |
algo_info[algo]["max_num_of_trees"] = [st.number_input("Max Number of Trees", min_value=0, max_value=1000, value=10, step=100, key=f"{algo}_max_num_of_trees")] | |
algo_info[algo]["early_stopping"] = st.checkbox("Early Stopping", value=True, key=f"{algo}_early_stopping") | |
if algo_info[algo]["early_stopping"]: | |
algo_info[algo]["early_stopping_rounds"] = [st.number_input("Early Stopping Rounds", min_value=0, max_value=1000, value=2, step=100, key=f"{algo}_early_stopping_rounds")] | |
algo_info[algo]["max_depth_of_tree"] = [st.number_input("Max Depth of Tree", min_value=0, max_value=1000, value=10, step=100, key=f"{algo}_max_depth_of_tree")] | |
algo_info[algo]["learningRate"] = [st.number_input("Learning Rate", min_value=0.0, max_value=1.0, value=0.1, step=0.001, key=f"{algo}_learningRate")] | |
algo_info[algo]["l1_regularization"] = [st.number_input("L1 Regularization", min_value=0.0, max_value=1.0, value=0.1, step=0.001, key=f"{algo}_l1_regularization")] | |
algo_info[algo]["l2_regularization"] = [st.number_input("L2 Regularization", min_value=0.0, max_value=1.0, value=0.1, step=0.001, key=f"{algo}_l2_regularization")] | |
algo_info[algo]["gamma"] = [st.number_input("Gamma", min_value=0.0, max_value=1.0, value=0.1, step=0.001, key=f"{algo}_gamma")] | |
algo_info[algo]["min_child_weight"] = [st.number_input("Min Child Weight", min_value=0.0, max_value=1.0, value=0.1, step=0.001, key=f"{algo}_min_child_weight")] | |
algo_info[algo]["sub_sample"] = [st.number_input("Sub Sample", min_value=0.0, max_value=1.0, value=0.1, step=0.001, key=f"{algo}_sub_sample")] | |
algo_info[algo]["col_sample_by_tree"] = [st.number_input("Column Sample By Tree", min_value=0.0, max_value=1.0, value=0.1, step=0.001, key=f"{algo}_col_sample_by_tree")] | |
algo_info[algo]["replace_missing_values"] = st.checkbox("Replace Missing Values", value=True, key=f"{algo}_replace_missing_values") | |
# Generate JSON | |
if st.button("Generate JSON and train models"): | |
session_name = datetime.now().strftime('%Y%m%d_%H%M%S') | |
json_data = generate_json(session_name, uploaded_file.name, target, train, column_info, algo_info) | |
# save json to file | |
if json_data is not None: | |
current_time = datetime.now().strftime('%Y%m%d_%H%M%S') | |
extension = "json" | |
file_name = f"uploaded_{current_time}.{extension}" | |
save_file_path = '../data/'+file_name | |
with open(save_file_path, 'w') as file: | |
# file.write(json_data.read()) | |
json.dump(json_data, file) | |
st.success("JSON file generated successfully, models are being trained!") | |
train_models(save_file_path, json_data) | |
def upload_json_and_train(): | |
st.write("### Upload JSON File") | |
json_file = st.file_uploader("Upload RTF/JSON/TXT file", type=["rtf", "json", "txt"]) | |
if json_file is not None: | |
current_time = datetime.now().strftime('%Y%m%d_%H%M%S') | |
extension = json_file.name.split('.')[-1] | |
file_name = f"{json_file.name.split('.')[0]}_{current_time}.{extension}" | |
save_file_path = '../data/'+file_name | |
with open(save_file_path, 'wb') as file: | |
file.write(json_file.read()) | |
st.success("File uploaded successfully, mdoels are ready to be trained!") | |
# create button to train models | |
if st.button("Train Models"): | |
if json_file is not None: | |
train_models(save_file_path, json_file) | |
else: | |
st.warning("Please upload a JSON file") | |
def main(): | |
# | |
main_heading = "<h1 style='text-align: center; color: #cce7ff; margin-bottom: 0; margin-top:-50px'>DataFlow Pro</h1>" | |
tagline = "<h4 style='text-align: center; color: #cce7ff; margin-top: -25px;'>Automating ML Workflow with Ease</h4>" | |
header_content = main_heading + tagline | |
st.markdown(header_content, unsafe_allow_html=True) | |
st.markdown("---") | |
st.subheader("Navigation") | |
st.write("If you want to create a JSON and train a model, please click on the <u><b>Create Json and Train Model</b></u> button.", unsafe_allow_html=True) | |
st.write("If you have an RTF/JSON/TXT file, please upload it and click on the <u><b>Upload Json and train model</b></u> button.", unsafe_allow_html=True) | |
page = st.radio(" ", ("Create Json and Train Model", "Upload Json and train model"), index= None) | |
if page == "Create Json and Train Model": | |
create_json_and_train() | |
elif page == "Upload Json and train model": | |
upload_json_and_train() | |
st.markdown(""" | |
<style> | |
.footer { | |
position: fixed; | |
bottom: 0; | |
left: 0; | |
width: 100%; | |
background-color: #000000; | |
text-align: center; | |
padding: 10px 0; | |
} | |
</style> | |
<div class="footer"> | |
<p>Made with ❤️ by Rupanshu Kapoor.</p> | |
</div> | |
""", unsafe_allow_html=True) | |
if __name__ == '__main__': | |
main() |