bohmian's picture
changed risk free rate
d83e630
raw
history blame
5.59 kB
import gradio as gr
import yfinance as yf
from pypfopt.discrete_allocation import DiscreteAllocation, get_latest_prices
from pypfopt import EfficientFrontier
from pypfopt import risk_models
from pypfopt import expected_returns
from pypfopt import plotting
import copy
import numpy as np
import pandas as pd
import plotly.express as px
import matplotlib.pyplot as plt
from datetime import datetime
import datetime
def plot_cum_returns(data, title):
daily_cum_returns = 1 + data.dropna().pct_change()
daily_cum_returns = daily_cum_returns.cumprod()*100
fig = px.line(daily_cum_returns, title=title)
return fig
def plot_efficient_frontier_and_max_sharpe(mu, S):
# Optimize portfolio for max Sharpe ratio and plot it out with efficient frontier curve
ef = EfficientFrontier(mu, S)
fig, ax = plt.subplots(figsize=(6,4))
ef_max_sharpe = copy.deepcopy(ef)
plotting.plot_efficient_frontier(ef, ax=ax, show_assets=False)
# Find the max sharpe portfolio
ef_max_sharpe.max_sharpe(risk_free_rate=0.02)
ret_tangent, std_tangent, _ = ef_max_sharpe.portfolio_performance()
ax.scatter(std_tangent, ret_tangent, marker="*", s=100, c="r", label="Max Sharpe")
# Generate random portfolios with random weights
n_samples = 1000
w = np.random.dirichlet(np.ones(ef.n_assets), n_samples)
rets = w.dot(ef.expected_returns)
stds = np.sqrt(np.diag(w @ ef.cov_matrix @ w.T))
sharpes = rets / stds
ax.scatter(stds, rets, marker=".", c=sharpes, cmap="viridis_r")
# Output
ax.legend()
return fig
def output_results(start_date, end_date, tickers_string):
tickers = tickers_string.split(',')
# Get Stock Prices
stocks_df = yf.download(tickers, start=start_date, end=end_date)['Adj Close']
# Plot Individual Stock Prices
fig_indiv_prices = px.line(stocks_df, title='Price of Individual Stocks')
# Plot Individual Cumulative Returns
fig_cum_returns = plot_cum_returns(stocks_df, 'Cumulative Returns of Individual Stocks Starting with $100')
# Calculatge and Plot Correlation Matrix between Stocks
corr_df = stocks_df.corr().round(2)
fig_corr = px.imshow(corr_df, text_auto=True, title = 'Correlation between Stocks')
# Calculate expected returns and sample covariance matrix for portfolio optimization later
mu = expected_returns.mean_historical_return(stocks_df)
S = risk_models.sample_cov(stocks_df)
# Plot efficient frontier curve
fig_efficient_frontier = plot_efficient_frontier_and_max_sharpe(mu, S)
# Get optimized weights
ef = EfficientFrontier(mu, S)
ef.max_sharpe(risk_free_rate=0.04)
weights = ef.clean_weights()
expected_annual_return, annual_volatility, sharpe_ratio = ef.portfolio_performance()
expected_annual_return, annual_volatility, sharpe_ratio = '{}%'.format((expected_annual_return*100).round(2)), \
'{}%'.format((annual_volatility*100).round(2)), \
'{}%'.format((sharpe_ratio*100).round(2))
weights_df = pd.DataFrame.from_dict(weights, orient = 'index')
weights_df = weights_df.reset_index()
weights_df.columns = ['Tickers', 'Weights']
# Calculate returns of portfolio with optimized weights
stocks_df['Optimized Portfolio'] = 0
for ticker, weight in weights.items():
stocks_df['Optimized Portfolio'] += stocks_df[ticker]*weight
# Plot Cumulative Returns of Optimized Portfolio
fig_cum_returns_optimized = plot_cum_returns(stocks_df['Optimized Portfolio'], 'Cumulative Returns of Optimized Portfolio Starting with $100')
return fig_cum_returns_optimized, weights_df, fig_efficient_frontier, fig_corr, \
expected_annual_return, annual_volatility, sharpe_ratio, fig_indiv_prices, fig_cum_returns
with gr.Blocks() as app:
with gr.Row():
gr.HTML("<h1>Bohmian's Stock Portfolio Optimizer</h1>")
with gr.Row():
start_date = gr.Textbox("2013-01-01", label="Start Date")
end_date = gr.Textbox(datetime.datetime.now().date(), label="End Date")
with gr.Row():
tickers_string = gr.Textbox("MA,META,V,AMZN,JPM,BA",
label='Enter all stock tickers to be included in portfolio separated \
by commas WITHOUT spaces, e.g. "MA,META,V,AMZN,JPM,BA"')
btn = gr.Button("Get Optimized Portfolio")
with gr.Row():
gr.HTML("<h3>Optimizied Portfolio Metrics</h3>")
with gr.Row():
expected_annual_return = gr.Text(label="Expected Annual Return")
annual_volatility = gr.Text(label="Annual Volatility")
sharpe_ratio = gr.Text(label="Sharpe Ratio")
with gr.Row():
fig_cum_returns_optimized = gr.Plot(label="Cumulative Returns of Optimized Portfolio (Starting Price of $100)")
weights_df = gr.DataFrame(label="Optimized Weights of Each Ticker")
with gr.Row():
fig_efficient_frontier = gr.Plot(label="Efficient Frontier")
fig_corr = gr.Plot(label="Correlation between Stocks")
with gr.Row():
fig_indiv_prices = gr.Plot(label="Price of Individual Stocks")
fig_cum_returns = gr.Plot(label="Cumulative Returns of Individual Stocks Starting with $100")
btn.click(fn=output_results, inputs=[start_date, end_date, tickers_string],
outputs=[fig_cum_returns_optimized, weights_df, fig_efficient_frontier, fig_corr, \
expected_annual_return, annual_volatility, sharpe_ratio, fig_indiv_prices, fig_cum_returns])
app.launch()