Spaces:
Runtime error
Runtime error
Commit
•
8aaccc9
0
Parent(s):
Duplicate from bofenghuang/whisper-demo-french
Browse filesCo-authored-by: bofeng huang <bofenghuang@users.noreply.huggingface.co>
- .gitattributes +34 -0
- README.md +15 -0
- app.py +1 -0
- packages.txt +1 -0
- requirements.txt +3 -0
- run_demo.py +97 -0
- run_demo_multi_models.py +148 -0
.gitattributes
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Whisper French Demo
|
3 |
+
emoji: 🤫
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: red
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.9.1
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
tags:
|
11 |
+
- whisper-event
|
12 |
+
duplicated_from: bofenghuang/whisper-demo-french
|
13 |
+
---
|
14 |
+
|
15 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
run_demo_multi_models.py
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ffmpeg
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
git+https://github.com/huggingface/transformers
|
2 |
+
torch
|
3 |
+
pytube
|
run_demo.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import pytube as pt
|
5 |
+
from transformers import pipeline
|
6 |
+
from huggingface_hub import model_info
|
7 |
+
|
8 |
+
MODEL_NAME = "bofenghuang/whisper-medium-cv11-french-punct"
|
9 |
+
CHUNK_LENGTH_S = 30
|
10 |
+
|
11 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
12 |
+
pipe = pipeline(
|
13 |
+
task="automatic-speech-recognition",
|
14 |
+
model=MODEL_NAME,
|
15 |
+
chunk_length_s=CHUNK_LENGTH_S,
|
16 |
+
device=device,
|
17 |
+
)
|
18 |
+
|
19 |
+
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language="fr", task="transcribe")
|
20 |
+
|
21 |
+
def transcribe(microphone, file_upload):
|
22 |
+
warn_output = ""
|
23 |
+
if (microphone is not None) and (file_upload is not None):
|
24 |
+
warn_output = (
|
25 |
+
"WARNING: You've uploaded an audio file and used the microphone. "
|
26 |
+
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
|
27 |
+
)
|
28 |
+
|
29 |
+
elif (microphone is None) and (file_upload is None):
|
30 |
+
return "ERROR: You have to either use the microphone or upload an audio file"
|
31 |
+
|
32 |
+
file = microphone if microphone is not None else file_upload
|
33 |
+
|
34 |
+
text = pipe(file)["text"]
|
35 |
+
|
36 |
+
return warn_output + text
|
37 |
+
|
38 |
+
|
39 |
+
def _return_yt_html_embed(yt_url):
|
40 |
+
video_id = yt_url.split("?v=")[-1]
|
41 |
+
HTML_str = (
|
42 |
+
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
|
43 |
+
" </center>"
|
44 |
+
)
|
45 |
+
return HTML_str
|
46 |
+
|
47 |
+
|
48 |
+
def yt_transcribe(yt_url):
|
49 |
+
yt = pt.YouTube(yt_url)
|
50 |
+
html_embed_str = _return_yt_html_embed(yt_url)
|
51 |
+
stream = yt.streams.filter(only_audio=True)[0]
|
52 |
+
stream.download(filename="audio.mp3")
|
53 |
+
|
54 |
+
text = pipe("audio.mp3")["text"]
|
55 |
+
|
56 |
+
return html_embed_str, text
|
57 |
+
|
58 |
+
|
59 |
+
demo = gr.Blocks()
|
60 |
+
|
61 |
+
mf_transcribe = gr.Interface(
|
62 |
+
fn=transcribe,
|
63 |
+
inputs=[
|
64 |
+
gr.inputs.Audio(source="microphone", type="filepath", optional=True),
|
65 |
+
gr.inputs.Audio(source="upload", type="filepath", optional=True),
|
66 |
+
],
|
67 |
+
outputs="text",
|
68 |
+
layout="horizontal",
|
69 |
+
theme="huggingface",
|
70 |
+
title="Whisper Demo: Transcribe Audio",
|
71 |
+
description=(
|
72 |
+
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the the fine-tuned"
|
73 |
+
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
74 |
+
" of arbitrary length."
|
75 |
+
),
|
76 |
+
allow_flagging="never",
|
77 |
+
)
|
78 |
+
|
79 |
+
yt_transcribe = gr.Interface(
|
80 |
+
fn=yt_transcribe,
|
81 |
+
inputs=[gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")],
|
82 |
+
outputs=["html", "text"],
|
83 |
+
layout="horizontal",
|
84 |
+
theme="huggingface",
|
85 |
+
title="Whisper Demo: Transcribe YouTube",
|
86 |
+
description=(
|
87 |
+
"Transcribe long-form YouTube videos with the click of a button! Demo uses the the fine-tuned checkpoint:"
|
88 |
+
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files of"
|
89 |
+
" arbitrary length."
|
90 |
+
),
|
91 |
+
allow_flagging="never",
|
92 |
+
)
|
93 |
+
|
94 |
+
with demo:
|
95 |
+
gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"])
|
96 |
+
|
97 |
+
demo.launch(enable_queue=True)
|
run_demo_multi_models.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import warnings
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import pytube as pt
|
6 |
+
import torch
|
7 |
+
from huggingface_hub import model_info
|
8 |
+
from transformers import pipeline
|
9 |
+
from transformers.utils.logging import disable_progress_bar
|
10 |
+
|
11 |
+
warnings.filterwarnings("ignore")
|
12 |
+
disable_progress_bar()
|
13 |
+
|
14 |
+
DEFAULT_MODEL_NAME = "bofenghuang/whisper-medium-cv11-french-punct"
|
15 |
+
MODEL_NAMES = [
|
16 |
+
"openai/whisper-small",
|
17 |
+
"openai/whisper-medium",
|
18 |
+
"openai/whisper-large-v2",
|
19 |
+
"bofenghuang/whisper-small-cv11-french",
|
20 |
+
"bofenghuang/whisper-small-cv11-french-punct",
|
21 |
+
"bofenghuang/whisper-medium-cv11-french",
|
22 |
+
"bofenghuang/whisper-medium-cv11-french-punct",
|
23 |
+
]
|
24 |
+
CHUNK_LENGTH_S = 30
|
25 |
+
MAX_NEW_TOKENS = 225
|
26 |
+
|
27 |
+
logging.basicConfig(
|
28 |
+
format="%(asctime)s [%(levelname)s] [%(name)s] %(message)s",
|
29 |
+
datefmt="%Y-%m-%dT%H:%M:%SZ",
|
30 |
+
)
|
31 |
+
logger = logging.getLogger(__name__)
|
32 |
+
logger.setLevel(logging.DEBUG)
|
33 |
+
|
34 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
35 |
+
logger.info(f"Model will be loaded on device {device}")
|
36 |
+
|
37 |
+
cached_models = {}
|
38 |
+
|
39 |
+
def maybe_load_cached_pipeline(model_name):
|
40 |
+
pipe = cached_models.get(model_name)
|
41 |
+
if pipe is None:
|
42 |
+
# load pipeline
|
43 |
+
# todo: set decoding option for pipeline
|
44 |
+
pipe = pipeline(
|
45 |
+
task="automatic-speech-recognition",
|
46 |
+
model=model_name,
|
47 |
+
chunk_length_s=CHUNK_LENGTH_S,
|
48 |
+
device=device,
|
49 |
+
)
|
50 |
+
# set forced_decoder_ids
|
51 |
+
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language="fr", task="transcribe")
|
52 |
+
# limit genneration max length
|
53 |
+
pipe.model.config.max_length = MAX_NEW_TOKENS + 1
|
54 |
+
|
55 |
+
logger.info(f"`{model_name}` pipeline has been initialized")
|
56 |
+
|
57 |
+
cached_models[model_name] = pipe
|
58 |
+
return pipe
|
59 |
+
|
60 |
+
|
61 |
+
def transcribe(microphone, file_upload, model_name):
|
62 |
+
warn_output = ""
|
63 |
+
if (microphone is not None) and (file_upload is not None):
|
64 |
+
warn_output = (
|
65 |
+
"WARNING: You've uploaded an audio file and used the microphone. "
|
66 |
+
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
|
67 |
+
)
|
68 |
+
|
69 |
+
elif (microphone is None) and (file_upload is None):
|
70 |
+
return "ERROR: You have to either use the microphone or upload an audio file"
|
71 |
+
|
72 |
+
file = microphone if microphone is not None else file_upload
|
73 |
+
|
74 |
+
pipe = maybe_load_cached_pipeline(model_name)
|
75 |
+
text = pipe(file)["text"]
|
76 |
+
|
77 |
+
logger.info(f"Transcription: {text}")
|
78 |
+
|
79 |
+
return warn_output + text
|
80 |
+
|
81 |
+
|
82 |
+
def _return_yt_html_embed(yt_url):
|
83 |
+
video_id = yt_url.split("?v=")[-1]
|
84 |
+
HTML_str = (
|
85 |
+
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
|
86 |
+
" </center>"
|
87 |
+
)
|
88 |
+
return HTML_str
|
89 |
+
|
90 |
+
|
91 |
+
def yt_transcribe(yt_url, model_name):
|
92 |
+
yt = pt.YouTube(yt_url)
|
93 |
+
html_embed_str = _return_yt_html_embed(yt_url)
|
94 |
+
stream = yt.streams.filter(only_audio=True)[0]
|
95 |
+
stream.download(filename="audio.mp3")
|
96 |
+
|
97 |
+
pipe = maybe_load_cached_pipeline(model_name)
|
98 |
+
text = pipe("audio.mp3")["text"]
|
99 |
+
|
100 |
+
logger.info(f"Transcription: {text}")
|
101 |
+
|
102 |
+
return html_embed_str, text
|
103 |
+
|
104 |
+
|
105 |
+
# load default model
|
106 |
+
maybe_load_cached_pipeline(DEFAULT_MODEL_NAME)
|
107 |
+
|
108 |
+
demo = gr.Blocks()
|
109 |
+
|
110 |
+
mf_transcribe = gr.Interface(
|
111 |
+
fn=transcribe,
|
112 |
+
inputs=[
|
113 |
+
gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Record"),
|
114 |
+
gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Upload File"),
|
115 |
+
gr.inputs.Dropdown(choices=MODEL_NAMES, default=DEFAULT_MODEL_NAME, label="Whisper Model"),
|
116 |
+
],
|
117 |
+
# outputs="text",
|
118 |
+
outputs=gr.outputs.Textbox(label="Transcription"),
|
119 |
+
layout="horizontal",
|
120 |
+
theme="huggingface",
|
121 |
+
title="Whisper Demo: Transcribe Audio",
|
122 |
+
description="Transcribe long-form microphone or audio inputs with the click of a button!",
|
123 |
+
allow_flagging="never",
|
124 |
+
)
|
125 |
+
|
126 |
+
yt_transcribe = gr.Interface(
|
127 |
+
fn=yt_transcribe,
|
128 |
+
inputs=[
|
129 |
+
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
130 |
+
gr.inputs.Dropdown(choices=MODEL_NAMES, default=DEFAULT_MODEL_NAME, label="Whisper Model"),
|
131 |
+
],
|
132 |
+
# outputs=["html", "text"],
|
133 |
+
outputs=[
|
134 |
+
gr.outputs.HTML(label="YouTube Page"),
|
135 |
+
gr.outputs.Textbox(label="Transcription"),
|
136 |
+
],
|
137 |
+
layout="horizontal",
|
138 |
+
theme="huggingface",
|
139 |
+
title="Whisper Demo: Transcribe YouTube",
|
140 |
+
description="Transcribe long-form YouTube videos with the click of a button!",
|
141 |
+
allow_flagging="never",
|
142 |
+
)
|
143 |
+
|
144 |
+
with demo:
|
145 |
+
gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"])
|
146 |
+
|
147 |
+
# demo.launch(server_name="0.0.0.0", debug=True, share=True)
|
148 |
+
demo.launch(enable_queue=True)
|