Spaces:
Build error
Build error
| #!/usr/bin/env python3 | |
| import os | |
| import glob | |
| from typing import List | |
| from dotenv import load_dotenv | |
| from multiprocessing import Pool | |
| from tqdm import tqdm | |
| from langchain.document_loaders import ( | |
| CSVLoader, | |
| EverNoteLoader, | |
| PyMuPDFLoader, | |
| TextLoader, | |
| UnstructuredEmailLoader, | |
| UnstructuredEPubLoader, | |
| UnstructuredHTMLLoader, | |
| UnstructuredMarkdownLoader, | |
| UnstructuredODTLoader, | |
| UnstructuredPowerPointLoader, | |
| UnstructuredWordDocumentLoader, | |
| PyPDFLoader | |
| ) | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain.vectorstores import Chroma | |
| from langchain.embeddings import HuggingFaceEmbeddings | |
| from langchain.docstore.document import Document | |
| if not load_dotenv(): | |
| print("Could not load .env file or it is empty. Please check if it exists and is readable.") | |
| exit(1) | |
| from constants import CHROMA_SETTINGS | |
| import chromadb | |
| # Load environment variables | |
| persist_directory = os.environ.get('PERSIST_DIRECTORY') | |
| source_directory = os.environ.get('SOURCE_DIRECTORY', 'source_documents') | |
| embeddings_model_name = os.environ.get('EMBEDDINGS_MODEL_NAME') | |
| chunk_size = 500 | |
| chunk_overlap = 50 | |
| # Custom document loaders | |
| # class MyElmLoader(UnstructuredEmailLoader): | |
| # """Wrapper to fallback to text/plain when default does not work""" | |
| # def load(self) -> List[Document]: | |
| # """Wrapper adding fallback for elm without html""" | |
| # try: | |
| # try: | |
| # doc = UnstructuredEmailLoader.load(self) | |
| # except ValueError as e: | |
| # if 'text/html content not found in email' in str(e): | |
| # # Try plain text | |
| # self.unstructured_kwargs["content_source"]="text/plain" | |
| # doc = UnstructuredEmailLoader.load(self) | |
| # else: | |
| # raise | |
| # except Exception as e: | |
| # # Add file_path to exception message | |
| # raise type(e)(f"{self.file_path}: {e}") from e | |
| # return doc | |
| # Map file extensions to document loaders and their arguments | |
| LOADER_MAPPING = { | |
| ".csv": (CSVLoader, {}), | |
| # ".docx": (Docx2txtLoader, {}), | |
| ".doc": (UnstructuredWordDocumentLoader, {}), | |
| ".docx": (UnstructuredWordDocumentLoader, {}), | |
| ".enex": (EverNoteLoader, {}), | |
| # ".eml": (MyElmLoader, {}), | |
| ".epub": (UnstructuredEPubLoader, {}), | |
| ".html": (UnstructuredHTMLLoader, {}), | |
| ".md": (UnstructuredMarkdownLoader, {}), | |
| ".odt": (UnstructuredODTLoader, {}), | |
| # ".pdf": (PyMuPDFLoader, {}), | |
| ".pdf": (PyPDFLoader, {}), | |
| ".ppt": (UnstructuredPowerPointLoader, {}), | |
| ".pptx": (UnstructuredPowerPointLoader, {}), | |
| ".txt": (TextLoader, {"encoding": "utf8"}), | |
| # Add more mappings for other file extensions and loaders as needed | |
| } | |
| def load_single_document(file_path: str) -> List[Document]: | |
| ext = "." + file_path.rsplit(".", 1)[-1].lower() | |
| if ext in LOADER_MAPPING: | |
| loader_class, loader_args = LOADER_MAPPING[ext] | |
| loader = loader_class(file_path, **loader_args) | |
| return loader.load() | |
| raise ValueError(f"Unsupported file extension '{ext}'") | |
| def load_documents(source_dir: str, ignored_files: List[str] = []) -> List[Document]: | |
| """ | |
| Loads all documents from the source documents directory, ignoring specified files | |
| """ | |
| all_files = [] | |
| for ext in LOADER_MAPPING: | |
| all_files.extend( | |
| glob.glob(os.path.join(source_dir, f"**/*{ext.lower()}"), recursive=True) | |
| ) | |
| all_files.extend( | |
| glob.glob(os.path.join(source_dir, f"**/*{ext.upper()}"), recursive=True) | |
| ) | |
| filtered_files = [file_path for file_path in all_files if file_path not in ignored_files] | |
| with Pool(processes=os.cpu_count()) as pool: | |
| results = [] | |
| with tqdm(total=len(filtered_files), desc='Loading new documents', ncols=80) as pbar: | |
| for i, docs in enumerate(pool.imap_unordered(load_single_document, filtered_files)): | |
| results.extend(docs) | |
| pbar.update() | |
| return results | |
| def process_documents(ignored_files: List[str] = []) -> List[Document]: | |
| """ | |
| Load documents and split in chunks | |
| """ | |
| print(f"Loading documents from {source_directory}") | |
| documents = load_documents(source_directory, ignored_files) | |
| if not documents: | |
| print("No new documents to load") | |
| exit(0) | |
| print(f"Loaded {len(documents)} new documents from {source_directory}") | |
| text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) | |
| texts = text_splitter.split_documents(documents) | |
| print(f"Split into {len(texts)} chunks of text (max. {chunk_size} tokens each)") | |
| return texts | |
| def does_vectorstore_exist(persist_directory: str, embeddings: HuggingFaceEmbeddings) -> bool: | |
| """ | |
| Checks if vectorstore exists | |
| """ | |
| db = Chroma(persist_directory=persist_directory, embedding_function=embeddings) | |
| if not db.get()['documents']: | |
| return False | |
| return True | |
| def main(): | |
| # Create embeddings | |
| embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name) | |
| # Chroma client | |
| chroma_client = chromadb.PersistentClient(settings=CHROMA_SETTINGS , path=persist_directory) | |
| if does_vectorstore_exist(persist_directory, embeddings): | |
| # Update and store locally vectorstore | |
| print(f"Appending to existing vectorstore at {persist_directory}") | |
| db = Chroma(persist_directory=persist_directory, embedding_function=embeddings, client_settings=CHROMA_SETTINGS, client=chroma_client) | |
| collection = db.get() | |
| texts = process_documents([metadata['source'] for metadata in collection['metadatas']]) | |
| print(f"Creating embeddings. May take some minutes...") | |
| db.add_documents(texts) | |
| else: | |
| # Create and store locally vectorstore | |
| print("Creating new vectorstore") | |
| texts = process_documents() | |
| print(f"Creating embeddings. May take some minutes...") | |
| db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS, client=chroma_client) | |
| db.persist() | |
| db = None | |
| print(f"Ingestion complete! You can now run app.py to query your documents") | |
| if __name__ == "__main__": | |
| main() | |